
MATRIXx TM

AutoCodeTM Reference

AutoCode Reference

April 2004 Edition
Part Number 370768B-01

Support

Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters

11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 683 0100

Worldwide Offices

Australia 1800 300 800, Austria 43 0 662 45 79 90 0, Belgium 32 0 2 757 00 20, Brazil 55 11 3262 3599,
Canada (Calgary) 403 274 9391, Canada (Ottawa) 613 233 5949, Canada (Québec) 450 510 3055,
Canada (Toronto) 905 785 0085, Canada (Vancouver) 514 685 7530, China 86 21 6555 7838,
Czech Republic 420 224 235 774, Denmark 45 45 76 26 00, Finland 385 0 9 725 725 11,
France 33 0 1 48 14 24 24, Germany 49 0 89 741 31 30, Greece 30 2 10 42 96 427, India 91 80 51190000,
Israel 972 0 3 6393737, Italy 39 02 413091, Japan 81 3 5472 2970, Korea 82 02 3451 3400,
Malaysia 603 9131 0918, Mexico 001 800 010 0793, Netherlands 31 0 348 433 466,
New Zealand 0800 553 322, Norway 47 0 66 90 76 60, Poland 48 22 3390150, Portugal 351 210 311 210,
Russia 7 095 783 68 51, Singapore 65 6226 5886, Slovenia 386 3 425 4200, South Africa 27 0 11 805 8197,
Spain 34 91 640 0085, Sweden 46 0 8 587 895 00, Switzerland 41 56 200 51 51, Taiwan 886 2 2528 7227,
Thailand 662 992 7519, United Kingdom 44 0 1635 523545

For further support information, refer to the Technical Support and Professional Services appendix. To comment
on the documentation, send email to techpubs@ni.com.

© 2000–2004 National Instruments Corporation. All rights reserved.

 Important Information

Warranty
The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects
in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National
Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives
notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be
uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before
any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are
covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent
editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.
In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. CUSTOMER’S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF
NATIONAL INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE LIABLE FOR
DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF. This limitation of the liability of National Instruments will apply regardless of the form of action, whether in contract or tort, including
negligence. Any action against National Instruments must be brought within one year after the cause of action accrues. National Instruments
shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty provided herein does not cover
damages, defects, malfunctions, or service failures caused by owner’s failure to follow the National Instruments installation, operation, or
maintenance instructions; owner’s modification of the product; owner’s abuse, misuse, or negligent acts; and power failure or surges, fire,
flood, accident, actions of third parties, or other events outside reasonable control.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National
Instruments Corporation.

Trademarks
AutoCode™, DocumentIt™, MATRIXx™, National Instruments™, NI™, ni.com™, SystemBuild™, and Xmath™ are trademarks of
National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

Patents
For patents covering National Instruments products, refer to the appropriate location: Help»Patents in your software, the patents.txt file
on your CD, or ni.com/patents.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS
(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF
RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN
ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT
INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE
IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY,
COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS
AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND
HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL
DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR
MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE
HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD
CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD
NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID
DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO
PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS.
BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS' TESTING
PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN
COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL
INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING
THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE
INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN,
PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.

Conventions

The following conventions are used in this manual:

<> Angle brackets that contain numbers separated by an ellipsis represent a
range of values associated with a bit or signal name—for example,
DIO<3..0>.

» The » symbol leads you through nested menu items and dialog box options
to a final action. The sequence File»Page Setup»Options directs you to
pull down the File menu, select the Page Setup item, and select Options
from the last dialog box.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to
avoid injury, data loss, or a system crash.

bold Bold text denotes items that you must select or click in the software, such
as menu items and dialog box options. Bold text also denotes parameter
names.

italic Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text that is a placeholder for a word
or value that you must supply.

monospace Text in this font denotes text or characters that you should enter from the
keyboard, sections of code, programming examples, and syntax examples.
This font is also used for the proper names of disk drives, paths, directories,
programs, subprograms, subroutines, device names, functions, operations,
variables, filenames, and extensions.

monospace bold Bold text in this font denotes the messages and responses that the computer
automatically prints to the screen. This font also emphasizes lines of code
that are different from the other examples.

monospace italic Italic text in this font denotes text that is a placeholder for a word or value
that you must supply.

© National Instruments Corporation v AutoCode Reference

Contents

Chapter 1
Introduction

Manual Organization ...1-1
General Information...1-2
Configuration File..1-2
Language-Specific Information ...1-2
Structure and Content of the Generated Code ...1-3
Using MATRIXx Help ..1-3

Additional Netscape Information ..1-3
Related Publications ..1-4

Chapter 2
C Language Reference

Stand-Alone Simulation...2-1
Compiling on Various Supported Platforms ...2-1

Stand-Alone Library ..2-2
System-Specific Files ..2-2
Target-Specific Utilities ..2-5

enable(), disable(), and background() Functions2-6
error() and fatalerr() Functions ...2-6
fatalerr(): Stand-Alone Utilities Detected Errors2-7
ERROR: Conditions Detected in the Generated Code......................2-8
Implementation_Initialize() Function ..2-9
Implementation_Terminate() Function ..2-9
External_Input () Function...2-10
External_Output () Function ..2-10

UserCode Blocks ...2-10
Linking Handwritten UCBs with AutoCode Applications..............................2-11

Implementing Handwritten UCBs ..2-13
Linking Handwritten UCBs (for AutoCode) with SystemBuild2-16
Variable Interface UCB...2-18

Interface Ordering ...2-18
Inputs and Outputs ..2-18
Function Prototype..2-19
Linking a Variable Interface UCB with the Simulator2-20

Procedure SuperBlocks..2-20
Generating Reusable Procedures...2-20
Linking Procedures with the SystemBuild Simulator2-20

Contents

AutoCode Reference vi ni.com

Linking Procedures with Real-Time Applications or Simulator 2-22
Invoking Generated Procedures Directly.. 2-22
Invoking Procedures Using Generated UCB Wrapper Function...... 2-24
Invoking Procedures Using Generated Subsystem Function 2-25

C Fixed-Point Arithmetic .. 2-26
Fixed-Point AutoCode/C Implementation .. 2-26
Generated Code with Fixed-Point Variables .. 2-28
Fixed-Point Data Types .. 2-28
User Types .. 2-30
Overflow Protection.. 2-31
Stand-Alone Files.. 2-31
Macro Interface ... 2-32
Function Interface ... 2-33
Fixed-Point Conversion and Arithmetic Macros .. 2-35

Conversion Macros... 2-35
Arithmetic Macros .. 2-38
Implementation of the Addition and Subtraction Macros 2-40
Selecting Wordsize Extension in the Preprocessor Macro 2-42
32-Bit Multiplication and Division Macros...................................... 2-42
32-Bit Multiplication .. 2-42
32-Bit Division ... 2-43
16-Bit by 8-Bit Division ... 2-43
32-Bit by 16-Bit Division ... 2-43

Fixed-Point Relational Macros ... 2-44
Some Relevant Issues.. 2-45

Chapter 3
Ada Language Reference

Stand-Alone Simulation .. 3-1
Supported Ada Compilers for the Stand-Alone Library 3-1

Supplied Templates ... 3-2
ada_rt.tpl Template ... 3-2
ada_sim.tpl Template .. 3-2
ada_fxpt_sys.tpl Template .. 3-2
ada_fxpt_sub.tpl Template.. 3-2

Stand-Alone Library.. 3-3
System-Specific Files.. 3-3

Data Types .. 3-5
Target-Specific Utilities .. 3-6

Enable(), Disable(), and Background() Procedures....................... 3-7
Error Procedure() Procedure.. 3-7
Implementation_Initialize() Procedure.. 3-8
Implementation_Terminate() Procedure.. 3-10

Contents

© National Instruments Corporation vii AutoCode Reference

External_Input () Procedure...3-10
External_Output() Procedure ...3-11

UserCode Blocks ...3-11
Linking Handwritten UCBs with AutoCode Applications..............................3-11
Calling UCBs...3-12

Procedure SuperBlocks..3-14
Generating Reusable Procedures...3-14
Linking Procedures with Real-Time Applications or Simulator.....................3-14

Ada Fixed-Point Arithmetic...3-16
How to Generate Real-Time Code ..3-16
Fixed-Point AutoCode/Ada Architecture ..3-16

Fixed-Point Data Types ..3-17
Generic Functions ...3-17
Instantiated Functions ...3-17
Package Dependencies ..3-18

Generated Code with Fixed-Point Variables...3-19
User Types...3-19

System-Level Parameters to Generate User Types...........................3-20
Overflow Protection ..3-20
Stand-Alone Files ..3-21
Compilation Example..3-21
Fixed-Point Type Declarations..3-23
Generic Functions..3-23
Bit-Wise Functions..3-26
Instantiated Functions Package ...3-26

Operator Instantiations ..3-26
Conversion Function Instantiations ..3-27
Sample Package ..3-28

Addition and Subtraction Functions..3-29
Multiplication and Division Functions..3-31

32-Bit Multiplication...3-31
32-Bit Division..3-31

Conversion Functions..3-31
Language-Defined Conversion ...3-32
Truncation Conversion..3-32
Explicit Rounding Conversion..3-32

Using System-Level Parameters to Generate Instantiations3-33
Using Subsystem-Level Parameters to Generate Instantiations......................3-33

System Scope Operators and Conversions..3-34
Known Ada Compiler Problems ...3-35
Comparing Results to SystemBuild’s Simulator...3-35
No-Op Conversion Function ...3-36

Contents

AutoCode Reference viii ni.com

Chapter 4
Generating Code for Real-Time Operating Systems

Real-Time Operating System Configuration File.. 4-1
Configuration Items .. 4-2
Table Syntax ... 4-2

Table Naming Convention.. 4-3
Table Column Contents .. 4-3
Table Orderings .. 4-3
File Comments.. 4-3

RTOS Configuration File Contents... 4-3
Processors Table ... 4-3
Scheduler Priority Table ... 4-4
Subsystem Table... 4-4
Interrupt Procedure SuperBlock Table ... 4-5
Background Procedure SuperBlock Table.. 4-6
Startup Procedure SuperBlock Table ... 4-7
Processor IP Name Table ... 4-7
Version Table ... 4-8

Using the Configuration File... 4-8

Chapter 5
Generated Code Architecture

Symbolic Name Creation .. 5-1
Default Names... 5-1
Signal Naming... 5-2
Duplicate Names ... 5-2
Selection of a Signal Name... 5-2

Subsystem and Procedure Boundaries.. 5-2
Typecheck Feature and Data Types .. 5-2

Global Storage ... 5-3
Percent vars (%var) ... 5-3
Global Variable Blocks ... 5-3

Sequencing Variable Blocks... 5-3
Global Variable Block and %var Equivalence 5-4
Optimization for Read-From Variable Blocks 5-4

Global Scope Signal Capability .. 5-4
Subsystems .. 5-5

Discrete and Continuous SuperBlocks Versus Subsystems............................ 5-5
Top-Level SuperBlock ... 5-6

Block Ordering.. 5-6
Interface Layers... 5-6
Scheduler External Interface Layer... 5-7

Contents

© National Instruments Corporation ix AutoCode Reference

System External Interface Layer ...5-7
Discrete Subsystem Interface Layer..5-8

Single-Rate System ...5-8
Multi-Rate System ..5-8
Sample and Hold...5-8

Static Data Within Subsystems ...5-9
iinfo ...5-9
R_P and I_P ..5-9
State Data ..5-9
Procedure Data ..5-10

Pre-init Phase...5-10
Init, Output, and State Phases..5-10
Copy Back and Duplicates ..5-10
Error Handling...5-11

Standard Procedures ..5-11
Structure-Based Interface ..5-11
Unrolled Interface..5-12
Phases and Error Handling ..5-12
Referenced Percent Variables..5-12
Procedure Arguments ..5-15

U, Y, S, and I...5-15
Extended Procedure Information Structure ...5-18

Caller Identification ..5-18
Compatibility Issues..5-19

Macro Procedure..5-20
Interface...5-20

Asynchronous Procedures..5-21
Interrupt ...5-21
Background..5-21
Startup..5-21

Changing %var Values During Startup...5-22
Condition Block...5-22

Default Mode...5-22
No-Default Mode...5-22
Sequential Mode..5-22

BlockScript Block..5-22
Inputs and Outputs...5-23
Environment Variables..5-24
Local Variables..5-24
Init, Output, and State Phases..5-25

Default Phase ..5-26

Contents

AutoCode Reference x ni.com

States ... 5-26
Local Variables and Phases .. 5-27
Discrete Semantics ... 5-27
Continuous Semantics .. 5-29

Looping Concepts ... 5-29
Terminology ... 5-29
Loops and Scalar Code ... 5-29
Rolling Loops with Scalar Code Generation 5-30
Vectorized Code ... 5-31
Types of Loops ... 5-31
Examples of Rolled and Unrolled Loops ... 5-32

Parameters ... 5-33
Using Parameters Instead of States in a Discrete Model.................. 5-33

Optimizations .. 5-35
Constant Propagation/Hard-Coding ... 5-35
Dead Code Elimination .. 5-35
Implicit Type Conversion ... 5-36

Special Directives ... 5-36
UserCode Block... 5-37

Phases of the UCB .. 5-37
Indirect Terms ... 5-37
Parameterized UCB Callout.. 5-38

Software Constructs... 5-39
IfThenElse Block .. 5-39
WHILE Block ... 5-39
BREAK Block... 5-40
CONTINUE Block.. 5-40
Local Variable Block .. 5-40
Sequencer Block ... 5-41

Difference Between Local and Global Variable Blocks ... 5-41
Scope... 5-41
Lifetime... 5-41

Continuous Subsystem .. 5-41
Explicit Phases .. 5-42
Integrator ... 5-42
Limitations .. 5-42

Multiprocessor Code Generation... 5-43
Shared Memory Architecture.. 5-43
Distributed Memory Architecture ... 5-44
Shared Memory Callouts .. 5-44

Callout Naming Convention ... 5-44
Mapping Command Options... 5-45
Fixed-Point Support for Multiprocessor AutoCode.. 5-45

Contents

© National Instruments Corporation xi AutoCode Reference

Definitions and Conventions ...5-45
Shared Memory Fixed-Point Callouts in AutoCode/C5-46

Shared Variable Block Support ...5-47
Shared Memory Callout Option..5-50

Global Variable Block Callouts...5-51
Callout Pairs ..5-51
Non-Shared (Local) Global Variable Blocks....................................5-51
Shared Global Variable Blocks...5-53

Chapter 6
Vectorized Code Generation

Introduction..6-1
How Code Is Generated...6-1

Scalar Gain Block Example ..6-2
Vectorized Gain Block Example...6-3
Array Subscripts..6-4

Signal Connectivity ...6-5
Block Outputs ...6-5
Block Inputs ..6-5

Vectorization Modes..6-7
Maximal Vectorization..6-7
Mixed Vectorization..6-7

Vector Labels and Names ...6-8
Example...6-8

Vectorization Features ...6-14
Multiple Arrays within a Block...6-15
Split-Merge Inefficiency ...6-17

Split Vector ...6-17
Merge ..6-19

External Outputs..6-21
Copy-Back ..6-21
Eliminating Copy-Back...6-23
Other Copy-Back Scenarios..6-23

Vectorized Standard Procedure Interface..6-23
Ada Array Aggregates and Slices..6-25

Vectorization of the BlockScript Block...6-27
Matrix Outputs ...6-28

Contents

AutoCode Reference xii ni.com

Chapter 7
Code Optimization

Read from Variable Blocks ... 7-1
Restart Capability .. 7-5
Merging INIT Sections.. 7-8
Reuse of Temporary Block Outputs .. 7-11

Reuse Temporaries as Specified ... 7-11
Maximal Reuse of Temporaries .. 7-11

Constant Propagation... 7-13
Optimizing with Matrix Blocks... 7-16

Optimizing with Constant Blocks ... 7-16
Optimizing with Callout Blocks ... 7-17

Optimizing with Inverse Blocks ... 7-17
Optimizing with Division Blocks ... 7-17

Summary.. 7-19

Chapter 8
AutoCode Sim Cdelay Scheduler

Introduction ... 8-1
Task Posting Policies... 8-2
Standard AutoCode Scheduler .. 8-3

Scheduler Pipeline... 8-5
Managing DataStores in the Scheduler ... 8-7

Sim Cdelay Scheduler ... 8-9
State Transition Diagrams of Tasks under Sim Cdelay... 8-10
Implementing the Sim Cdelay AutoCode Scheduler... 8-12

Implementation Details ... 8-12
DataStore Priority Problem... 8-13

Using the Sim Cdelay Scheduler ... 8-14
Template Configuration for Enhanced Performance... 8-15
Shortcomings of the Sim Cdelay Scheduler .. 8-16

Chapter 9
Global Scope Signals and Parameterless Procedures

Introduction ... 9-1
Data Monitoring/Injection ... 9-2

Specifying Monitored Signals... 9-2
Generating Code for Monitored Signals ... 9-3
Limitations .. 9-4

Unsupported Blocks ... 9-4
Connection to External Output ... 9-4

Contents

© National Instruments Corporation xiii AutoCode Reference

Variable Block Aliasing..9-4
Monitored Signals within a Procedure SuperBlock..........................9-4
Monitoring Procedure External Outputs ...9-4

Parameterless Procedure ..9-5
Specifying Parameterless Procedure Interface ..9-5

Input Specification ..9-5
Output Specification ...9-6

Using a Parameterless Procedure ..9-6
Global-to-Global Input Connection ..9-6
Global Output Connection ..9-6

Condition Block Code Generation ..9-7
Reusing a Parameterless Procedure...9-7
Generating Code for Parameterless Procedures ..9-7
Issues and Limitations ...9-8

Communication Between Subsystems ..9-8
Variable Blocks Versus Global Scope ..9-8
SystemBuild Simulator ...9-8
Connection to External Output ...9-9

Recommendations ...9-9
Naming Convention ..9-9
Model Documentation...9-9
Explicit Sequencing ..9-9
Analyzer and AutoCode Warnings ...9-10
Changing Scope Class...9-10

Command Options ...9-10

Appendix A
Technical Support and Professional Services

Index

© National Instruments Corporation 1-1 AutoCode Reference

1
Introduction

This manual provides reference material for using AutoCode to write
production quality code using graphical tools. Together with the AutoCode
User Guide and the Template Programming Language User Guide,
AutoCode documentation describes how to generate robust, high-quality,
real-time C or Ada source code from SystemBuild block diagrams.

Manual Organization
This manual includes the following chapters:

• Chapter 1, Introduction, provides an overview of the rapid prototyping
concept, the automatic code generation process, and the nature of
real-time generated code.

• Chapter 2, C Language Reference, discusses files used to interface
AutoCode and the generated C code to your specific platform and
target processor, and target-specific utilities needed for simulation and
testing.

• Chapter 3, Ada Language Reference, discusses files used to interface
AutoCode and the generated Ada code to your specific platform and
target processor, and target-specific utilities needed for simulation and
testing.

• Chapter 4, Generating Code for Real-Time Operating Systems,
describes the RTOS configuration file and functionality provided for
generating code for real-time operating systems.

• Chapter 5, Generated Code Architecture, supplies more details about
the content and framework of the generated code. This includes
storage usage, various procedures, specialized blocks, and subsystems.

• Chapter 6, Vectorized Code Generation, discusses various ways to
generate vectorized code. This includes describing the options
available, design guidelines, and implementation details about the
vectorized code.

• Chapter 7, Code Optimization, discusses how to optimize the
generated code. This includes explaining the details of generating
production quality code for micro controller-based applications.

Chapter 1 Introduction

AutoCode Reference 1-2 ni.com

• Chapter 8, AutoCode Sim Cdelay Scheduler, discusses the Sim Cdelay
low-latency scheduler.

• Chapter 9, Global Scope Signals and Parameterless Procedures,
discusses additional signals and procedures.

This guide also has an Index.

General Information
As an integral part of the rapid prototyping concept, AutoCode lets you
generate high-level language code from a SystemBuild block diagram
model quickly, automatically, and without programming skills. The
AutoCode User Guide describes the processes for generating code,
including the parameters that you must use. This manual provides details
of how AutoCode actually works, so that you will have an idea of what to
expect from AutoCode if you attempt to modify the generation of code.

Configuration File
The configuration file is a text file containing tables of information related
to the generated source code components of a model, like subsystems and
nonscheduled procedure SuperBlocks. Each table contains configuration
information about its respective component. Various configuration files are
supplied with AutoCode, including one for Real-Time Operating Systems
(RTOS) as described in Chapter 4, Generating Code for Real-Time
Operating Systems. For additional configuration information, refer to the
AutoCode User Guide.

Language-Specific Information
This manual describes some of the details of AutoCode operation for both
the C and Ada languages.

Specific topics include the following:

• Stand-alone (sa) files

• Fixed-point code generation

• UserCode Blocks (UCBs)

• Macro Procedure Blocks

• Procedure SuperBlocks

Chapter 1 Introduction

© National Instruments Corporation 1-3 AutoCode Reference

Structure and Content of the Generated Code
This reference includes detailed descriptions about what is generated for
many of the blocks used within a model. Also, the framework of the
generated code is discussed to show how all of the pieces work together to
form an executable simulation. This discussion is only relevant to those
designers who are either writing their own templates or who are striving to
optimize the generated code.

 Topics include the following:

• Generating code for use within real-time operating systems

• Code architecture

• Vectorized code generation

Using MATRIXx Help
MATRIXx 7.x provides a hypertext markup language (HTML) help
system. The MATRIXx Help is a self-contained system with multiple
hypertext links from one component to another. This help, augmented by
online and printed manuals, covers most MATRIXx topics except for
installation.

The MATRIXx Help runs on Netscape. The MATRIXx CD-ROM includes
the supported version. On UNIX systems, an OEM version of Navigator is
automatically included in the MATRIXx installation. On PCs, Netscape
must be installed independently using the Netscape installation procedure
included on the MATRIXx CD.

Additional Netscape Information
For more information on Netscape products, visit the Netscape Web site at
http://home.netscape.com.

Chapter 1 Introduction

AutoCode Reference 1-4 ni.com

Related Publications
National Instruments provides a complete library of publications to support
its products. In addition to this guide, publications that you may find
particularly useful when using AutoCode include the following:

• AutoCode User Guide

• Template Programming Language User Guide

• Xmath User Guide

• SystemBuild User Guide

• BlockScript User Guide

• DocumentIt User Guide

For additional documentation, refer to the MATRIXx Help or visit the
National Instruments Web site at ni.com/manuals.

© National Instruments Corporation 2-1 AutoCode Reference

2
C Language Reference

This chapter discusses files used to interface AutoCode and the generated
C code to your specific platform and target processor. This chapter also
describes target-specific utilities needed for simulation and testing.

Stand-Alone Simulation
The template provided for C code generation produces code that, when
compiled and linked with stand-alone files, forms a stand-alone simulation.
This simulation can be executed with MATRIXx-style data as input, and
produces results that can be loaded back into Xmath for analysis. You must
compile the generated code along with the stand-alone library to produce
the simulation executable.

Chapter 2, Using AutoCode, of the AutoCode User Guide describes how to
compile the code and stand-alone library, generate sample input data, and
load the data into Xmath for analysis.

Compiling on Various Supported Platforms
The generated code usually includes platform-specific code. Most of this
code is not generated by AutoCode; rather, that code exists in the template.
Also, the stand-alone library has platform-specific code to deal with file I/O
and floating-point numerics. You must compile the generated code and the
stand-alone library with a defined preprocessor symbol appropriate for
your platform (refer to Table 2-1). For example, on the Solaris platform,
the compile statement is similar to:

% acc -DSOLARIS -o simulation simmodel.c sa_*.o -lm

Note This example assumes the stand-alone library was compiled into separate object
files into the current working directory and that the stand-alone header files also exist in
the current working directory.

Chapter 2 C Language Reference

AutoCode Reference 2-2 ni.com

Stand-Alone Library
This section describes the system-specific and target-specific stand-alone
(sa) files supplied with your system.

System-Specific Files
National Instruments furnishes files to interface AutoCode and the
generated code to your development platform (AIX, Compaq, HP,
SGI, Solaris, Windows) and to the target processor in your test bed or
rapid-prototyping system. Both header (.h extension) and C (.c extension)
source files are provided in your src distribution directory. The names of
the distribution directories and files are shown in Table 2-2.

Table 2-1. Recognized C Preprocessor Defines for Supported Platforms

Platform Preprocessor Define Compiler Switch

AIX (IBM UNIX) IBM -DIBM

Compaq Tru64 5.0 OSF1 -DOSF1

HPUX (700 series) HP700 -DHP700

HPUX (other than 700) HP -DHP

SGI IRIX SGI -DSGI

Sun Solaris 2.x SOLARIS -DSOLARIS

Windows 2000/NT/9x MSWIN32 -DMSWIN32

Table 2-2. Distribution Directories and Files

Platform UNIX Windows

Top-Level
Directory

Environment variable: $MTXHOME %MTXHOME%

Executables Directory:
Executable:

$MTXHOME/bin
autostar

%MTXHOME%\bin
autostar

Utilities Directory:
Files:
Script:

$CASE/ACC/src
sa_*.c, sa_*.h
compile_c_sa.sh

%CASE%\ACC\src
sa_*.c, sa_*.h
compile_c_sa.bat

Chapter 2 C Language Reference

© National Instruments Corporation 2-3 AutoCode Reference

• The principal file is sa_utils.c, the stand-alone utilities file. At the
time that you compile sa_utils.c and your generated code program,
you must make the following header files available locally:

sa_sys.h sa_defn.h sa_utils.h

sa_math.h sa_types.h sa_intgr.h

sa_math.c (C file from distribution directory)

• If the generated code contains time references (that is, if the variable
RT_DURATION appears in the generated code), file sa_time.h must
be available in the local directory.

• If you have defined any UserCode Blocks, the following files must be
available locally:

sa_user.c AutoCode UCB template

sa_user.h Header file

Note If you use the fuzzy logic block in your model, the sa_fuzz.c and sa_fuzzy.h
files must be available locally. Use this file only when linking an AutoCode UCB back into
SystemBuild. Also, sa_user.c is just a template for a UCB and only needs to be compiled
into the stand-alone simulation if your SystemBuild model includes UCBs. Refer to the
Linking Handwritten UCBs (for AutoCode) with SystemBuild section for more
information.

• If you use fixed-point data types in your model, files that implement
fixed-point operations must be available. For more details about
AutoCode fixed-point implementation and fixed-point support files,
refer to the C Fixed-Point Arithmetic section.

Table 2-3 summarizes the most significant header files. The sa_ prefix
indicates stand-alone.

Templates Directory:
Templates:
Direct Access
Templates:

$CASE/ACC/templates
c_sim.tpl,
c_intgr.tpl
c_sim.dac

%CASE%\ACC\templates
c_sim.tpl,
c_intgr.tpl
c_sim.dac

Demos Directory: $XMATH/demos %XMATH%\demos

Table 2-2. Distribution Directories and Files (Continued)

Platform UNIX Windows

Chapter 2 C Language Reference

AutoCode Reference 2-4 ni.com

Data Types
Several of the target-specific utilities are involved with data types
(in the sa_types.h file). The three following data types are defined for
the C Code Generator:

RT_FLOAT Corresponds to C type double or float, depending on
your C compiler.

RT_INTEGER Corresponds to C type integer.

RT_BOOLEAN Corresponds to C type integer.

At compilation, you must make available the sa_types.h header file,
which declares these types. This file is in the src distribution directory
on your system; you can edit a copy of it as required. The structure
STATUS_RECORD also is declared in sa_types.h to be used with
hand-coded UserCode Blocks. You can modify sa_types.h if you need

Table 2-3. Header Files

File Purpose

sa_sys.h Defines the development platform. Contains a C
preprocessor #define statement for each supported
platform.

sa_types.h Defines the supported data types and certain math
constants.

sa_defn.h Defines constants for generated code, error codes, and
mapping for ANSI features such as const and volatile.

sa_intgr.h Contains definitions of integration algorithms
(including user-supplied integrator) used in code
generation of hybrid or continuous systems.

sa_fuzzy.h Contains definitions of fuzzy logic support routines.

sa_utils.h Contains external function prototypes for the
stand-alone utilities.

sa_math.h Declares certain extensions to ANSI-Standard C math
functions. The sa_math.c file, which contains the
code for the extensions, is also required.

sa_time.h Declares a time-related variable.

sa_user.h Furnishes a function prototype for UCBs.

Chapter 2 C Language Reference

© National Instruments Corporation 2-5 AutoCode Reference

to. For example, RT_INTEGER can be redefined as long int if arithmetic
overflow becomes a problem on a given platform.

Target-Specific Utilities
Target-specific utilities (in sa_utils.c) perform hardware, application,
and C-specific tasks that are required for simulation and testing. They can
be modified to support the generated code on different target computers.
As furnished, these routines simulate I/O operations that would occur in
a simulation environment, using input files created using MATRIXx.
These files are intended to remain unmodified for use in comparing your
simulations with generated code outputs. However, for target-system usage
on your rapid prototyping or end-user system, these routines can be modified
or rewritten completely and recompiled for the target system. When you do
this, be sure to keep a copy of the sa_utils.c file or keep separate versions
of the files in separate directories.

There is no requirement that the file be named sa_utils.c; however, the
name you use must be specified at link time. Inside the file, the names of
the external variables, functions, and other references must be preserved.
As furnished for this release, the routines are written in C, but this is not
required. If you rewrite the routines, they should still be written in a
language that offers direct control of the I/O and interrupt hardware of the
target computer and can be linked to the object form of the generated C
program. Normally, these utilities need to be created only once for each
target computer. In general, a given set of target-specific utilities need only
be changed when the target hardware is modified. The routines are shown
in Table 2-4.

Table 2-4. Target-Specific Utility Routines

Routine Description

Enable() Unmask timer interrupt.

Disable() Mask timer interrupt.

Background() Background polling loop.

Error(), fatalerr() Error handlers.

Implementation_Initialize() Initialize I/O hardware and
perform other
implementation-specific
initialization tasks.

Chapter 2 C Language Reference

AutoCode Reference 2-6 ni.com

The sa_utils.c file contains comments about each of the routines as they
are used for comparing simulation with generated code results.

After you generate code, link the generated code with sa_*.o object files
(refer to Chapter 2, Using AutoCode, of the AutoCode User Guide). For
example, on UNIX platforms:

cc -o gen_ap
gen_ap.c $ISI/ACC/src/sa_*.o -l other libraries

where gen_ap is the name of the generated code file.

enable(), disable(), and background() Functions
enable() unmasks timer interrupts. disable() masks timer interrupts
to prevent re-entry of the scheduler during critical sections. enable()
and disable() are not needed in some implementations. These
functions are furnished as stubs and #defined as NULL in the
sa_utils.h file.

The background() function, as provided in sa_utils.c, merely
invokes the scheduler for the appropriate number of computation cycles
and calls the error handler if any scheduler error occurs.

error() and fatalerr() Functions
void fatalerr(RT_INTEGER ERROR);

void error(RT_INTEGER NTSK,RT_INTEGER ERRORFLAG);

Implementation_Terminate() Perform
implementation-specific
termination tasks.

External_Input() Collect external inputs.

External_Output() Post external outputs.

Signal_Remote_Dispatch() Multiprocessor
implementations only; signal
secondary processors that a
dispatch table is available.

Table 2-4. Target-Specific Utility Routines (Continued)

Routine Description

Chapter 2 C Language Reference

© National Instruments Corporation 2-7 AutoCode Reference

Two error functions are provided, fatalerr() and error(). The
fatalerr() function reports exception conditions detected by the
functions in the sa_utils.c file. error() reports conditions detected
by the generated code during execution. Not all reported conditions are
errors. These functions can be invoked for deactivating all necessary
functions and then passing an alarm to the external environment or for
initiating recovery action. You can choose either to return from an error
function or to halt the machine.

fatalerr(): Stand-Alone Utilities Detected Errors
Several error conditions are trapped in sa_utils.c by default, but you
can expand this capability in your own versions of the program, detecting
your own error conditions and adding your own messages. The ERROR
value that is returned is evaluated by a C language switch-case statement.
Any RT_INTEGER value can be used for an error indication, except that the
value of –1 is reserved for use in the scheduler.

The following are generated messages displayed in the default version of
the sa_utils.c file. Most of these messages pertain to the processing of
the input and output files for execution of generated code.

INPUT FILE IS NOT IN Xmath {matrixx,ascii} FORMAT

Save the file in MATRIXx ASCII format from Xmath, then try again.

INPUT FILE IS NOT V7.0 OR LATER

The input data file was generated using an obsolete version of MATRIXx.
Save the file in MATRIXx ASCII format from Xmath, then try again.

INPUT FILE CONTAINS MORE THAN TWO ARRAYS

INPUT TIME VECTOR NOT ONE COLUMN

INPUT U DIMENSION NOT (TIME x NUMBER OF INPUTS)

The following messages indicate a bad input file.

INPUT TIME VECTOR TOO LARGE

INPUT U ARRAY TOO LARGE FOR AVAILABLE STORAGE

OUTPUT STORAGE EXCEEDS THE AVAILABLE STORAGE

The following messages indicate that the size of the input file has exceeded
one or more of the storage allocation size limits established by
sa_utils.c. These limits are #defined at the very beginning of the
sa_utils.c header, just after the #include header statements. Refer to

Chapter 2 C Language Reference

AutoCode Reference 2-8 ni.com

the comments there and adjust the limits accordingly, then recompile and
relink the sa_utils.c file.

ERROR OPENING THE INPUT FILE

ERROR OPENING THE OUTPUT FILE

A problem was encountered opening the input or output file. Possible
causes include a file protection violation.

UNKNOWN ERROR

A value of the ERROR variable occurred that was not one of those defined
for the switch-case statement. Check any error indications you may have
introduced.

ERROR: Conditions Detected in the Generated Code
The RT_INTEGER variable ERROR_FLAG is passed if an error occurs in
running the generated code. The following conditions are trapped, not all
of which indicate that an error has occurred.

The following messages might be generated during the execution of the
generated code:

Stop Block encountered in task n

This is not necessarily an error. This refers to a SystemBuild Stop
Simulation Block encountered in the execution of the generated code.

Math Error encountered in task n

Check your model for overflows, division by zero, and similar problems.

User code error encountered in task n

Refer to Chapter 15, UserCode Blocks, of the SystemBuild User Guide
or the source listing of the USR01 routine for meanings of UCB errors.
You can extend the scope of these messages, so it might be one of yours.

Unknown error encountered in task n

A possible cause is an incorrect user-written error condition in the
generated code.

Time overflow occurred in task n

This indicates a subsystem (or task) overflow. Refer to the Scheduler
Errors section of Chapter 4, Managing and Scheduling Applications,
of the AutoCode User Guide for timing overflow conditions.

Chapter 2 C Language Reference

© National Instruments Corporation 2-9 AutoCode Reference

Implementation_Initialize() Function
void Implementation_Initialize (RT_FLOAT *BUS_IN

RT_INTEGER, NI, RT_FLOAT BUS_OUT, RT_INTEGER NO,

RT_FLOAT SCHEDULER_FREQ);

In the default version of sa_utils.c (simulation comparison), this
function initializes the I/O for the system by loading input data from the
user-furnished MATRIXx FSAVE input file. In the version of this routine
that you write to make the generated code work with the target computer,
this routine performs implementation-specific initialization processes for
the real-time system. These might include, but are not limited to, the
following:

• Initialize the interrupt system of the target computer.

• Initialize the math coprocessor, if any.

• Set up shared memory and other hardware-dependent processes.

• Initialize I/O hardware.

• Initialize the clock-timer of the target system to request interrupts at
the minor cycle of the control system; that is, the time period required
between interrupts for synchronous operation of the tasks, as
calculated by AutoCode from the block diagrams.

Implementation_Terminate() Function
void Implementation_Terminate(void)

In the default version of sa_utils.c (simulation comparison), this
function completes the I/O processing for the execution of the system by
writing output data to the output file and closing the file. In the version of
this routine that you write to make the generated code work with the target
computer, this routine might be called on to perform many kinds of
implementation-specific shutdown processes for the real-time system in
addition to data completion tasks. These might include, but are not limited
to, the following:

• Disable interrupt hardware.

• Free up shared memory and other resources.

• De-initialize I/O hardware.

Chapter 2 C Language Reference

AutoCode Reference 2-10 ni.com

External_Input () Function
RT_INTEGER External_Input(void)

External_Input() is for use in the simulation comparison mode; it
reads in external input data from your specified FSAVE input file. The data
appears in XINPUT, an array of type RT_FLOAT, dimensioned equal to the
input vector (T- and U-vectors) defined at simulation time. No data
conversion is required in this version of the generated code, because all data
is passed as arrays of type RT_FLOAT. The routine returns the value of
SCHEDULER_STATUS, which reports on the success of the input operation
and is passed to the External_Input() routine by the scheduler. In the
target version of sa_utils.c, the operation of this function is much the
same; every time it is called, External_Input() returns an input vector
from the hardware sensors.

External_Output () Function
RT_INTEGER External_Output(void)

External_Output() is for use in the simulation comparison mode;
it posts external output data to your specified output file. The data is
presented in XOUTPUT, an array of type RT_FLOAT, dimensioned equal to
the output Y vector as defined at simulation time. No data conversion is
required in this version of the generated code, because all data is passed
as arrays of type RT_FLOAT. The routine returns the value of
SCHEDULER_STATUS, which is passed to it by the scheduler. In the target
version of sa_utils.c, the operation of this function is much the same;
every time it is called, External_Output() posts an output vector to the
software data bus.

UserCode Blocks
This section describes how to link UserCode Blocks (UCBs) with
AutoCode or SystemBuild applications. AutoCode supports all
SystemBuild data types for inputs and outputs and the generation of the
fixed and variable interface options. The variable interface does not include
optional arguments to the user code—for example, states—if that argument
is not specified in the UCB. Unless otherwise stated, the following sections
describe the fixed interface option of a UCB.

Chapter 2 C Language Reference

© National Instruments Corporation 2-11 AutoCode Reference

Linking Handwritten UCBs with AutoCode Applications
To write code for UserCode Blocks (UCBs), refer to the sa_user.c file,
which is provided in your src distribution directory.

The sa_user.c file contains an example of a UCB function declaration
(refer to the Implementing Handwritten UCBs section). If your model has
more than one UCB, each prototype must have a unique name. Make one
or more copies of this file and insert the code that implements the
algorithm(s) of the UCB(s). One or more uniquely-named UCB code
functions can be placed inside each copy of the sa_user.c file and the
copies can be given any convenient names. If renamed files are included,
the names can be placed into the stand-alone file compilation script
(compile_c_sa.sh) for automatic compilation. If the UCB function—for
example, USR01, refer to callout 2 of Figure 2-1—is renamed, all other
occurrences of USR01 in sa_user.c and sa_user.h also must be
changed appropriately, including the occurrence in directive $ucb. Refer
to callout 1 of Figure 2-1.

Chapter 2 C Language Reference

AutoCode Reference 2-12 ni.com

Figure 2-1. Example UserCode Function File (sa_user.c)

The $ucb directive is recognized and interpreted by the automatic linking
facility of the simulator in SystemBuild to distinguish between UCBs
written for simulation purposes using SystemBuild only and UCBs written
for linking with AutoCode applications. The exact name of the UCB
function must be specified in the $ucb directive if this UCB function is
used for simulation using SystemBuild.

The computations performed by UCBs can update both block states and
outputs. Execution of each section is controlled by flags set by the
simulator in the INFO structure. Refer to the Implementing Handwritten
UCBs section.

1

2

Chapter 2 C Language Reference

© National Instruments Corporation 2-13 AutoCode Reference

Implementing Handwritten UCBs
Arguments are passed for each call to the UCB in the following order:

INFO, T, U, NU, X, XDOT, NX, Y, NY, R_P, and I_P

Pointers to all of the arrays (U, X, XD, Y, R_P, I_P) and scalers corresponding
to array sizes (NU, NX, NY) are passed to each call to the UCB. The sizes of
R_P and I_P arrays must be entered into the UCB dialog to ensure that
proper storage is allocated by the caller. Also, the initial conditions for
states have to be specified in the dialog. Table 2-5 lists the type and purpose
of UCB arguments used in the fixed calling method.

Table 2-5. UCB Calling Arguments and Data Types for the Fixed Interface

 Argument Data Type Description

INFO struct STATUS_RECORD* A pointer to STATUS_RECORD structure
representing operation requests and status.

T RT_DURATION Elapsed time.

U[] RT_FLOAT An array (of size NU) of inputs to the UCB.

NU RT_INTEGER The number of inputs to the UCB.

X[] RT_FLOAT An array (of size NX) of state variables of
the UCB.

XDOT[] RT_FLOAT An array (also of size NX). Includes the next
discrete states of X for the discrete subsystems,
and the derivative of X for the continuous
subsystems.

NX RT_INTEGER The number of states (and next states).

Y[] RT_FLOAT An array (of size NY) of outputs from the UCB.

NY RT_INTEGER The number of outputs from the UCB.

R_P[] RT_FLOAT An array of real parameters.

I_P[] RT_INTEGER An array of integer parameters.

Chapter 2 C Language Reference

AutoCode Reference 2-14 ni.com

The operations within UCBs are controlled by the argument INFO, a pointer
to a structure of type STATUS_RECORD that is passed as part of the
argument list for each UCB (located in sa_types):

typedef struct STATUS_RECORD

{

RT_INTEGER ERROR;

RT_BOOLEAN INIT;

RT_BOOLEAN STATES;

RT_BOOLEAN OUTPUT;

} RT_STATUS_RECORD;

The following example shows the general form of UCB equations for
AutoCode and indicates how the INFO status record pointer is used to
control the computations.

if (INFO->INIT) {

 /* do user code initialization */

 INFO->INIT = 0;

}

if (INFO->OUTPUTS) {

 /* do output calculations having the general form:

 Y = H(T,X,XD,U,RP,IP); */

}

if (INFO->STATES) {

 /* do state update calculation with the general form:

 XD = F(T,X,XD,U,RP,IP); */

}

When an error occurs within the UCB, set INFO->ERROR equal to some
nonzero integer value as an error return. Also, make sure that INFO->INIT
is set to FALSE (0) at the end of the initialization cycle.

The process of linking handwritten UCBs (in usr_dsp.c) with an
AutoCode application (in dsp.c) is depicted in Figure 2-2. The
SystemBuild model in Figure 2-2 depicts the filter described by the
difference equation:

y(k) = –1/2 * y(k – 2) + 3 * u(k) + u(k – 2)

The UserCode Block provides the interface to the handwritten function
usr_dsp() implemented in the file usr_dsp.c. The usr_dsp()
function essentially implements the behavior of the same filter.

Chapter 2 C Language Reference

© National Instruments Corporation 2-15 AutoCode Reference

Figure 2-2. Linking Handwritten UCBs with AutoCode Applications

Generate AutoCode Application
dsp .c

usr_dsp.c (Handwritten UCB using sa_user .c example)

compile
and link

File Name: usr_dsp.c

y (k) = -1/2*y(k-2) + 3* u(k) + u(k-2);

which leads to the State-Space realization:

x1(k+1) = x2(k)

x2(k+1) = -1/2* x1(k) - 1/2*u(k)

y(k) = x1(k) + 3*u(k)

Chapter 2 C Language Reference

AutoCode Reference 2-16 ni.com

Linking Handwritten UCBs (for AutoCode) with SystemBuild
After you have written a UCB to create an AutoCode application, you can
use the same UCB for simulation. SystemBuild can automatically compile
and link your UserCode function into the simulation engine (release 4.0 and
later). Refer to Figure 2-3.

SystemBuild provides the usr01.c example file and AutoCode provides
the sa_user.c example file for writing UCBs. These files are different
and should not be used interchangeably for linking UCBs with
SystemBuild and AutoCode applications. usr01.c is strictly meant to link
user-written code with the SystemBuild simulator. sa_user.c is meant to
link user-written code with AutoCode applications. After the code has been
written using sa_user.c, the same file might be linked with SystemBuild.
The $ucb directive in usr_dsp.c in Figure 2-3 makes it possible to link
handwritten UCBs for AutoCode with SystemBuild. However, code
written using usr01.c, provided by SystemBuild, cannot be linked with an
AutoCode application.

Chapter 2 C Language Reference

© National Instruments Corporation 2-17 AutoCode Reference

Figure 2-3. Linking Handwritten UCBs with the SystemBuild Simulator

The arguments to a UCB written only for linking with the SystemBuild
simulator (using usr01.c) are inherently different than the arguments
to a UCB written for linking with an AutoCode application (using
sa_user.c). This difference stems from several sources. For example,
UCBs written for linking with an AutoCode application might not take
advantage of some features supported in the SystemBuild simulator, such
as linearization. Linearization is not supported in AutoCode generated
code. Also, highly optimized implementation of a UCB tends to be more
of an issue when linking it with AutoCode generated code. If you have
handwritten code for simulation with SystemBuild using the UCB format
in usr01.c and plan to use the same algorithm with AutoCode-generated

usr_dsp.c (Handwritten UCB using sa_user.c example)

simulation (automatic compiling and linking of usr_dsp.c into new UCB shared library)

simexe.lnx

Fleming: usr_dsp.c
Function Name: usr_dsp

Chapter 2 C Language Reference

AutoCode Reference 2-18 ni.com

applications, make sure you adapt the same algorithm in the body of a
function using the AutoCode UCB arguments as in sa_user.c.

Variable Interface UCB
The preceding sections described the fixed interface; however, a UCB can
also use the variable interface option. For information on how to specify the
variable interface option, refer to the SystemBuild User Guide. When a
model containing a variable interface UCB is generated, the code to call the
UCB varies depending upon the data types and optional arguments
specified by the UCB. For example, if the UCB does not have any states,
arguments related to states are not passed. The following sections describe
what AutoCode generates for the variable interface.

Interface Ordering
The variable interface consists of arguments required to meet the
specification of the UCB. These arguments are passed relative to a fixed
total ordering of all possible arguments. The following is the total ordering.
Refer to Table 2-5 for descriptions of the arguments:

INFO, T, {u1, u2, ...}, {y1, y2, ...}, {X[], XD[], NX},

{R_P, NRP}, {I_P, NIP}

Note Arguments shown within braces {} are related; either all or none of these arguments
will be generated.

Interface Examples
The following samples of generated code are based on the specification of
a UCB.

/* INFO not used; T used; 2 inputs; 1 output; */

usr01(TIME, in1, in2, &out1);

/* INFO not used; T not used; 1 input; 5IPs */

usr02(in1, &IP[0], 5);

/* INFO used; T not used; 1 output; 4 states */

usr03(&info, &out1, &X[0], &XD[0], 4);

Inputs and Outputs
The fixed interface requires that all inputs and outputs be the floating-point
(RT_FLOAT) data type. However, the variable interface supports all data
types for the inputs and outputs of the UCB. Consequently, this aspect of
the variable interface can lead to errors.

Chapter 2 C Language Reference

© National Instruments Corporation 2-19 AutoCode Reference

As previously stated, the inputs and outputs of the UCB will have the same
data type as specified in the model diagram. Inputs are passed by value
while outputs are passed by reference. In addition, the “shape” of an
argument describes whether it is a scalar value or an array. For information
on how to specify the data type and shape of the inputs and outputs of the
UCB, refer to the SystemBuild User Guide.

Another complexity relates to vectorization with AutoCode code
generation. By design, the variable interface UCB is insulated from
the many possible combinations. The interface to the UCB will remain
constant relative to all of the AutoCode optimization. As a result,
AutoCode performs any needed copying—for example, staging—of inputs
and outputs to make sure the proper arguments are passed to the UCB.
For example, if the UCB expects an array of five inputs, yet scalar code is
generated, AutoCode creates a temporary array for those inputs and passes
that temporary array to the UCB.

Function Prototype
National Instruments recommends that you create a function prototype for
your variable interface UCB functions. This will provide some additional
checking that the compiler can do to ensure that the generated interface
matches what you expected without your implementation of the UCB
function.

The following is a sample prototype for a variable interface UCB function:

void ucb01(

 RT_FLOAT change[2], /*** inputs ***/

 RT_INTEGER xpos,

 RT_INTEGER ypos,

 RT_FLOAT *rate, /*** outputs ***/

 RT_INTEGER posdata[3],

 RT_FLOAT *RP, /*** RP ***/

 RT_INTEGER NRP

);

Chapter 2 C Language Reference

AutoCode Reference 2-20 ni.com

Linking a Variable Interface UCB with the Simulator
Unlike the fixed interface which provides an automatic method for linking
with the Simulator, the variable interface is too complicated for that
method. As a result, you are required to create a “wrapper” function that
interfaces between the Simulator and your code. For information on how to
create the wrapper for the Simulator, refer to the SystemBuild User Guide.

Procedure SuperBlocks
This section describes how to generate and link Procedure SuperBlocks.

Generating Reusable Procedures
Generate a reusable procedure from your Procedure SuperBlock as
described in Chapter 3, Ada Language Reference. Refer to callout 1
of Figure 2-4. Along with the algorithmic procedure (refer to callout 2),
AutoCode also generates the respective hook procedure or wrapper
(refer to callout 3) for automatic linking with the SystemBuild simulator.

Refer to Chapter 5, Generated Code Architecture, and Chapter 9, Global
Scope Signals and Parameterless Procedures, for more information about
generating procedures.

Linking Procedures with the SystemBuild Simulator
Replace the procedure SuperBlock with a UserCode Block (UCB), refer
to callout 4 of Figure 2-4 and place the appropriate file name and function
name in the UCB dialog box entries. The function name should be that of
the Procedure SuperBlock with _ucbhook appended to it.

When simulating the model, the SystemBuild simulator automatically
compiles and links the generated code, and executes the simulation with the
new code library created at this point.

If more than one Procedure SuperBlock resides in the top-level discrete
SuperBlock from which the procedures are generated, AutoCode will only
generate a UCB wrapper for the first Procedure SuperBlock it encounters.
If you want to generate wrappers for the other Procedure SuperBlocks,
place each Procedure SuperBlock in a separate Discrete SuperBlock and
generate code. You can also modify the template file to generate wrappers
for all procedures in your model by invoking the TPL function
proc_ucb_hook on all Procedure SuperBlocks. Notice how default
template file c_sim.tpl invokes proc_ucb_hook for one Procedure
SuperBlock, modify it to loop on all Procedure SuperBlocks, and invoke

Chapter 2 C Language Reference

© National Instruments Corporation 2-21 AutoCode Reference

proc_ucb_hook. Refer to the Template Programming Language User
Guide.

Figure 2-4. Linking Generated Reusable Procedures

Procedure

Generate Reusable Procedure

Filename: myproc.c
Function Name:

simexe.lnx

myproc.c

simulation (automatic compiling and linking
of myproc.c int. new UCB shared library)

SUPER

BLOCK

Procedure

myproc

USER

CODE

myproc

myproc

1

2

3

4

 myproc_ucbhook
(name of procedure
SuperBlock with
_ucbhook appended to it)

Chapter 2 C Language Reference

AutoCode Reference 2-22 ni.com

Linking Procedures with Real-Time Applications or Simulator
Generate reusable procedures from your Procedure SuperBlocks as
described in this chapter and in Chapter 3, Ada Language Reference. To
link generated reusable procedures with your own application or simulator
you have the three following options:

• Invoke the generated algorithmic procedure directly (refer to callout 2
of Figure 2-4), passing it pointers to structure objects as arguments.

• Invoke the re-entrant UCB wrapper routine generated to link with
SystemBuild UCBs (refer to callout 3 of Figure 2-4), passing it
arguments, which are pointers to arrays and values.

• Invoke the generated non-reentrant subsystem function, which invokes
the procedure.

The first option is more efficient for performance reasons, but might not be
the easiest to use. The second option provides ease of use in terms of
argument list and re-entrancy, but is the least efficient in some cases. The
third option also provides ease of use in terms of argument list, but although
the procedure itself is re-entrant, the subsystem invoking the procedure is
not re-entrant.

Invoking Generated Procedures Directly
To invoke a generated algorithmic procedure directly from your own
application, you must have thorough understanding of the arguments to the
procedure. When this is achieved, several steps need to be taken to invoke
the procedure.

The model in Example 2-1 contains a Procedure SuperBlock named proc
with a time delay block and a BlockScript block. The arguments to the
generated procedure corresponding to Procedure SuperBlock proc are
shown in Figure 2-5.

Example 2-1 Model with Procedure SuperBlock

Depending on the nature of the application, complete the following steps to
invoke the procedure:

1. Create an object of type _procedure name_u and copy in the inputs
to the procedure. A pointer to this object will be passed as argument U
to the procedure.

2. Create an object of type _procedure name_y where the outputs of
the procedure will be stored. A pointer to this object will be passed as
argument Y to the procedure.

Chapter 2 C Language Reference

© National Instruments Corporation 2-23 AutoCode Reference

3. Create an object of type _procedure name_s where the states of the
procedure will be stored and initialize all members of the object to 0.0.
This should be done during initialization only. A pointer to this object
will be passed as argument S to the procedure.

Figure 2-5. Arguments to Generated Procedure proc

4. Create an object of type _procedure-name_info where the
informational data will be stored and assign proper values to elements
iinfo and rinfo. If Xmath variables or Variable block variables were
used in the procedure, the variable pointers need to be initialized to

Generate Reusable Procedure

Chapter 2 C Language Reference

AutoCode Reference 2-24 ni.com

point to the appropriate global variables. A pointer to this object will
be passed as argument I to the procedure.

5. Invoke the procedure using pointers to the objects created in steps 1
through 4.

6. Toggle the state flag of the states object of the procedure—that is, if the
value is 0 toggle it to 1, if the value is 1 toggle it to 0—before calling
the procedure again.

Several of the previous steps are exercised by the other two methods for
invoking generated procedures described in the Linking Procedures with
Real-Time Applications or Simulator section. Details are provided in the
Invoking Procedures Using Generated UCB Wrapper Function section and
the Invoking Procedures Using Generated Subsystem Function section.
Use the generated UCB wrapper and subsystem code as a guide. The UCB
wrapper is generated for the purpose of re-entrancy, thus producing extra
copy in and out of parameter and states variables and control and status
arrays, while the subsystem code is not re-entrant—that is, the states and
information data structures are declared as static such that the need to copy
in and out of variables is no longer necessary.

Invoking Procedures Using Generated UCB Wrapper
Function
As described in Chapter 1, Introduction, of the AutoCode User Guide,
when generating a reusable procedure from a Procedure SuperBlock,
a hook procedure or (UCB-style) wrapper along with the algorithmic
procedure, is automatically generated. This wrapper is used by the
SystemBuild simulator to automatically link the procedure for simulation.
The arguments to the wrapper follow the same format of the SystemBuild
explicit UserCode Block. A comment providing information about the
wrapper and its arguments is generated above the wrapper function. You
can use the wrapper directly from your application to invoke the procedure,
but remember that this function is re-entrant, thus exercising copy in and
out of variables that add extra overhead to the application.

Complete the following steps to invoke the wrapper function.

1. Create an array of four elements of type integer, representing the
status and control argument iinfo, and initialize it properly. Refer to
the SystemBuild User Guide for an explanation of iinfo. Only the
first four elements of this array will be used by the generated
procedure. This array will be passed as argument iinfo.

2. Create an array of four elements of type double, representing the
timing-related information for the called procedure, and initialize it

Chapter 2 C Language Reference

© National Instruments Corporation 2-25 AutoCode Reference

properly. Refer to the SystemBuild User Guide for an explanation of
rinfo. Only the first four elements of this array will be used by the
generated procedure. This array will be passed as argument rinfo.

3. Create an array sized by the number of inputs in the procedure (refer to
the comment) of type double and copy in the inputs to the procedure.
This array will be passed as argument U. Also create a variable of type
int and initialize to the number of inputs in the procedure. A pointer
to this variable will be passed as argument NU.

4. Create an array sized by the number of outputs in the procedure (refer
to the comment) of type double where the outputs of the procedure
will be stored. This array will be passed as argument Y. Also create
a variable of type int and initialize to the number of outputs in the
procedure. A pointer to this variable will be passed as argument NY.

5. Create two arrays sized by the number of states in the procedure (refer
to the comment) of type double and initialize all elements to 0.0.
These arrays will be passed as arguments X (states) and XD
(derivatives). Also create a variable of type int and initialize to the
number of states in the procedure. A pointer to this variable will be
passed as argument NX.

6. Create two arrays sized by the number of integer and real parameters
in the procedure. Refer to the comment of types int and double and
initialize all elements to 0 and 0.0, respectively. These arrays will be
passed as arguments I_P and R_P.

7. Invoke the procedure using the arrays and pointers to the variables
created in steps 1 through 6.

Invoking Procedures Using Generated Subsystem
Function
When generating a reusable procedure from a Procedure SuperBlock, along
with the algorithmic procedure and the (UCB-style) wrapper, a subsystem
function (subsys_number) also is generated. You can use the subsystem
function directly from your application to invoke the procedure, but keep
in mind that this function is not re-entrant, as several variables in this
function are declared static to avoid the overhead of copy in and out of the
variables.

All of the following arguments need to be passed for each call to the
procedure in the following order: U, Y. These arguments are pointers to
structures reflecting the procedure’s inputs and outputs. The inputs to the
subsystem are provided by the argument U, a pointer to a structure named
_Subsys_number_in (or _Sys_ExtIn). This structure has mixed

Chapter 2 C Language Reference

AutoCode Reference 2-26 ni.com

data-typed variables reflecting each subsystem input signal and type.
The outputs to the subsystem are provided by the argument Y, a pointer
to a structure named _Subsys_number_out. This structure has mixed
data-typed variables reflecting each subsystem output signal and type.

The following overall steps need to be taken to invoke the subsystem
function:

1. Create an object of type _Subsys_1_in (see generated subsystem
code) and copy in the inputs to the subsystem. A pointer to this object
will be passed as argument U to the subsystem.

2. Create an object of type _Subsys_1_out where the outputs of the
subsystem will be stored. A pointer to this object will be passed as
argument Y to the subsystem.

3. Invoke the procedure using pointers to the objects created in steps 1
and 2.

C Fixed-Point Arithmetic
Fixed-point calculations provide significant advantages over floating-point
arithmetic. These include:

• Faster execution on most processors

• 8-bit, 16-bit, and 32-bit representations of fixed-point numbers

• Ability to interface to inexpensive processors that do not support
floating-point arithmetic

This section describes the implementation of fixed-point arithmetic in
AutoCode/C.

Note The SystemBuild User Guide has a fixed-point arithmetic chapter that explains the
basics of fixed-point arithmetic and the use of fixed-point arithmetic in SystemBuild
models.

Fixed-Point AutoCode/C Implementation
SystemBuild lets you represent vectors as fixed-point signals to which
fixed-point arithmetic will be applied. Refer to the SystemBuild User
Guide. Fixed-point signals and numbers are represented in AutoCode/C
as integer data types. An associated radix position—that is, the integer
marking the point that divides the integer and fractional part of the

Chapter 2 C Language Reference

© National Instruments Corporation 2-27 AutoCode Reference

number—for each integer item and the sign are managed by the code
generator. Arithmetic expressions are scaled to emulate a fixed-point
capability, and all expressions involving the item are coded to be consistent
with the chosen radix position.

AutoCode supports a fixed-point library that implements all of the
fixed-point operations (algebraic, relational, conversion). There are
two different interfaces to the fixed-point library.

• The default and most commonly used one is the macro interface where
the fixed-point operations are encoded as macros.

• The other interface is the function interface where all the fixed-point
operations are implemented as functions. In this interface every
fixed-point operation can result in a function call.

Note If you are using the function interface, compile the AutoCode-generated source file
using the compiler flag FX_FUNC_INTERFACE.

For example, if your platform is Solaris and you are using the fixed-point
function interface, the command line might appear as:

% acc -o gen_ap -DSOLARIS -DFX_FUNC_INTERFACE gen_ap.c
sa_*.o -lm

where gen_ap.c represents any AutoCode generated source file.

Because fixed-point operations get inlined while using the macro interface,
an application linked with the macro interface will execute at a faster rate
than the same application linked with the function interface.

All the files needed for the macro interface library are present in the
directory $CASE/ACC/macro_interface while the files needed for
the function interface are present in the directory $CASE/ACC/
function_interface. By default, the system-specific source directory
(src) is a link to the macro_interface directory. By linking and working
in the directory src, the user gets to work with the macro interface. In order
to work with the function interface, the user must make the src directory a
link to the function interface. Files common to both directories are present
in both directories.

The supplied macros and functions are written in C. C neither allows
efficient coding of multiplication/division of 32-bit variables, nor does it
take advantage of processor-specific capabilities, such as trapping of
overflows, which can be detected in assembly code by checking the
processor’s status flag. However, you can write functions in assembly

Chapter 2 C Language Reference

AutoCode Reference 2-28 ni.com

language and replace the supplied macros (or functions) with your
(assembly) functions so that you can take full advantage of the processor’s
arithmetic capabilities.

Generated Code with Fixed-Point Variables
Code generated for models using fixed-point variables—such as the
examples provided in this chapter—will differ from code generated for
models using floating-point, integer, or logical signals in the following
areas:

• Signal and variable type declarations will reflect fixed-point types.

• Arithmetic operators +, –, *, and / will be replaced by fixed-point
arithmetic macro calls (or function calls based on the interface used).

• Relational operators >, >=, <, <=, ==, and != will, when necessary, be
replaced by fixed-point relational macro calls.

• Floating-point literals used in SystemBuild models will be replaced by
the scaled integer counterpart.

• Macros (or procedures) for converting between various fixed-point
types will be invoked when necessary.

Fixed-Point Data Types
Fixed-point type definitions are provided in the system-specific files src
directory. Files sa_types.h, sa_defn.h, sa_fxscale.h, and
sa_fxlimit.h use typedef statements to represent fixed-point types
and related constants for 8-bit, 16-bit, and 32-bit data. All fixed-point types
have an associated radix position value and a sign (signed or unsigned).
The radix position value is clearly related to the data type scale factor
scale factor = 2–(radix position). To perform any arithmetic operation, both the
value and the radix position scalar are required. The table below lists the
data types generated by AutoCode/C. For information on ranges and
accuracy of each type, refer to the SystemBuild User Guide.

Table 2-6. AutoCode/C Data Types

Data
Type

Number
of Bits

Signed or
Unsigned Data Type Name

byte 8 unsigned RT_UBYTE (radix 00)

RT_UBYTExx (xx = radix 48 to –16)

signed RT_SBYTE (radix 00)

RT_SBYTExx (xx = radix 48 to –16)

Chapter 2 C Language Reference

© National Instruments Corporation 2-29 AutoCode Reference

A typical fixed-point type looks like the following:

RT_USHORT06

where USHORT stands for unsigned short, and 06 indicates the radix
position.

Fixed-point variables that are always positive in nature can be declared as
unsigned. This has the advantage of providing one more bit of accuracy
than with signed fixed-point variables, because the most significant bit is
used for storing the sign in that data type.

Example 2-2 shows some of the I/O type declarations. Only the significant
parts of the code are shown.

Example 2-2 Fixed-Point C I/O Type Declarations

struct _Subsys_1_out {

 RT_SSHORT13 SS13;

 RT_SSHORT15 SS15;

 RT_SSHORT15 SS15_1;

 RT_USHORT14 US14;

 RT_USHORT10 US10;

 RT_SSHORT13 SS13_1;

 RT_SSHORT12 SS12;

 RT_SSHORT08 SS8;

short 16 unsigned RT_USHORT (radix 00)

RT_USHORTxx (xx = radix 48
to –16)

signed RT_SSHORT (radix 00)

RT_SSHORTxx (xx = radix 48
to –16)

long 32 unsigned RT_ULONG (radix 00)

RT_ULONGxx (xx = radix 48 to –16)

signed RT_SLONG (radix 00)

RT_SLONGxx (xx = radix 48 to –16)

Table 2-6. AutoCode/C Data Types (Continued)

Data
Type

Number
of Bits

Signed or
Unsigned Data Type Name

Chapter 2 C Language Reference

AutoCode Reference 2-30 ni.com

 RT_SSHORT05 SS5;

 RT_SSHORT SS0;

 RT_SSHORT05 SS5_1;

};

struct _Sys_ExtIn {

 RT_USHORT13 US13;

 RT_SSHORT14 SS14;

};

/******* System Ext I/O type definitions. *******/

struct _Subsys_1_out subsys_1_out;

struct _Sys_ExtIn sys_extin;

static RT_FLOAT ExtIn [NUMIN+1];

static RT_FLOAT ExtOut [NUMOUT+1];

/******** Procedures’ declarations ********/

/******* Procedure: proc *******/

/***** Inputs type declaration. *****/

struct _proc_u {

 RT_USHORT13 US13;

};

/***** Outputs type declaration. *****/

struct _proc_y {

 RT_SSHORT13 SS13;

 RT_SSHORT15 SS15;

 RT_SSHORT15 SS15_1;

 RT_USHORT14 US14;

 RT_USHORT10 US10;

 RT_SSHORT13 SS13_1;

 RT_SSHORT12 SS12;

};

/***** Info type declaration. *****/

struct _proc_info {

 RT_INTEGER iinfo[5];

};

User Types
You can define your own data types (called user types or UTs) in terms of
the intrinsic types using the Xmath UT editor. UTs and the UT editor are
described in the SystemBuild User Guide.

Chapter 2 C Language Reference

© National Instruments Corporation 2-31 AutoCode Reference

The UTs appear as typedef statements in the generated C code. For
example:

typedef volts RT_SBYTE03;

This code defines the data type called volts to be a signed byte with radix
position 3.

Overflow Protection
Overflow is defined as loss of significance—that is, a computation losing
bits in the integer part of the number. The term underflow is used to mean
overflow on a negative number.

An Overflow Protection capability is provided to protect against overflows.
Overflow Protection consists in detecting an overflow condition and
replacing the overflowed number with the extremal value for the data type
of the number—the maximum positive number if the overflowed number
was positive; the maximum negative number if it was negative.

Overflow can be efficiently detected in assembly code by examining the
processor status flags, whereas in C, these flags are not available, making
it necessary to test the results for consistency.

Most macros and functions with overflow protection have been combined
into sets of signed and unsigned macros and functions, and combinations
of both. This was done because overflow protection is different for signed
and unsigned operands. This difference is due to the difference in lower and
upper limits of signed and unsigned types. An unsigned type has 0 as the
lower limit, whereas a signed type has a negative number as the lower limit.
However, given the same word length and value position, the upper limit of
a signed type is always smaller than the upper limit of an unsigned type.

Overflow protection is performed in all macros and functions that have a “p”
at the end of the macro name. Examples of these macros are listed in the
Conversion Macros section and the Arithmetic Macros section.

Overflow protection is controlled by the -ovfp option. Specifying -ovfp
0 causes generation of unprotected macros, and specifying -ovfp 1 causes
generation of protected macros. The default is to generate protected
macros.

Stand-Alone Files
All of the stand-alone files, with the exception of sa_types.h, have a
common prefix sa_fx, indicating fixed-point functionality.

Chapter 2 C Language Reference

AutoCode Reference 2-32 ni.com

Macro Interface
The macro interface files are:

sa_types.h Updated to include fixed-point types.

sa_fx.h Contains fixed-point conversion macros.

sa_fxp.h Contains fixed-point conversion macros with
overflow protection.

sa_fxr.h Contains fixed-point relational macros.

sa_fxm.h Contains fixed-point arithmetic macros.

sa_fxmp.h Contains fixed-point arithmetic macros with
overflow protection. For 32-bit division and
multiplication, overflow sometimes cannot be
detected.

sa_fx_temps.h Contains the declaration information for
temporary variables used in fixed-point
computations.

sa_fxprv.h Contains macros used only by the other macros.

sa_fxscale.h Contains scale factor constants for different radix
values.

sa_fxlimit.h Contains maximum and minimum values that can
be represented in different fixed-point types.

sa_fxadd_byte.c Contains fixed-point addition functions for byte
data type.

sa_fxadd_short.c Contains fixed-point addition functions for short
data type.

sa_fxadd_long.c Contains fixed-point addition functions for long
data type.

sa_fxsub_byte.c Contains fixed-point subtraction functions for byte
data type.

sa_fxsub_short.c Contains fixed-point subtraction functions for
short data type.

sa_fxsub_long.c Contains fixed-point subtraction functions for
long data type.

sa_fxmul_long.c Contains fixed-point multiplication functions for
long data type. Multiplication for byte and short
data types are completely implemented as macros.

sa_fxdiv_long.c Contains fixed-point division functions for long
data type.

Chapter 2 C Language Reference

© National Instruments Corporation 2-33 AutoCode Reference

sa_fx_externs.c Contains definitions for extern variables such as
mask buffers that are read only.

Function Interface
The function interface files are:

sa_types.h Updated to include fixed-point types.

sa_fxp.h Contains fixed-point conversion macros with
overflow protection.

sa_fxr.h Contains fixed-point relational macros.

sa_fxm.h Contains fixed-point arithmetic macros.

sa_fxmp.h Contains fixed-point arithmetic macros with
overflow protection. For 32-bit division and
multiplication, overflow sometimes cannot be
detected.

sa_fx_temps.h Contains the declaration information for
temporary variables used in fixed-point
computations.

sa_fxprv.h Contains macros used only by the other macros.

sa_fxscale.h Contains scale factor constants for different radix
values.

sa_fxlimit.h Contains maximum and minimum values that can
be represented in different fixed-point types.

sa_fx_f.h Contains prototypes for fixed-point conversion
functions without overflow protection.

sa_fxp_f.h Contains prototypes for fixed-point conversion
functions with overflow protection.

sa_fxm_f.h Contains prototypes for fixed-point algebraic
functions without overflow protection.

sa_fxmp_f.h Contains prototypes for fixed-point algebraic
functions with overflow protection

sa_fxadd_byte.c Contains fixed-point addition functions for byte
data type.

sa_fxadd_short.c Contains fixed-point addition functions for short
data type.

sa_fxadd_long.c Contains fixed-point addition functions for long
data type.

Chapter 2 C Language Reference

AutoCode Reference 2-34 ni.com

sa_fxsub_byte.c Contains fixed-point subtraction functions for byte
data type.

sa_fxsub_short.c Contains fixed-point subtraction functions for
short data type.

sa_fxsub_long.c Contains fixed-point subtraction functions for
long data type.

sa_fxmul_byte.c Contains fixed-point multiplication functions for
byte data type.

sa_fxmul_short.c Contains fixed-point multiplication functions for
short data type.

sa_fxmul_long.c Contains fixed-point multiplication functions for
long data type.

sa_fxdiv_byte.c Contains fixed-point division functions for byte
data type.

sa_fxdiv_short.c Contains fixed-point division functions for short
data type.

sa_fx_f.c Contains fixed-point conversion functions with
overflow protection.

sa_fxp_f.c Contains fixed-point conversion functions without
overflow protection.

sa_fxm_f.c Contains fixed-point algebraic functions without
overflow protection.

sa_fxdiv_long.c Contains fixed-point division functions for long
data type.

sa_fx_externs.c Contains definitions for extern variables such as
mask buffers that are read only.

These stand-alone files have naming conventions based on the functionality
of the macros and whether or not the macros support overflow protection.
Refer to the Overflow Protection section. For example, the sa_fxm.h file
contains macros performing arithmetic functions that do not have overflow
protection, but file sa_fxmp.h contains macros with overflow protection
that perform similar functions. There only is one file (sa_fxr.h) for
relational macros as overflow protection is not a concern for macros
implementing relational operations.

Chapter 2 C Language Reference

© National Instruments Corporation 2-35 AutoCode Reference

Fixed-Point Conversion and Arithmetic Macros
Although this section explains different fixed-point operations in terms of
macros, all of these operations are supported as functions in the function
interface. Hence, in the following sections the term macro can be
completely substituted by the term function.

Three types of fixed-point macros are generated by AutoCode:

• Conversion macros that convert one type of number to another. Refer
to the Conversion Macros section.

• Arithmetic macros that perform addition, subtraction, multiplication,
or division. Refer to the Arithmetic Macros section.

• Relational macros that compare two numbers and produce a Boolean
result. Refer to the Fixed-Point Relational Macros section.

Conversion Macros
Conversion macros are used for converting from one fixed-point data type
to another, from floating-point to fixed-point or from fixed-point to
floating-point, or from integer to fixed-point or from fixed-point to integer.
These macros in turn make use of the left-shift or right-shift macros defined
in sa_fxprv.h.

The right-shift macro shifts the bits of a value to the right. When a negative
number is shifted right, it results in flooring of that number instead of
truncating because of the two’s complement scheme of representing
negative numbers. Therefore, the right-shift macro with truncate behavior
checks for a negative number and does the needed adjustment to produce
truncation.

Whenever a fixed-point number needs to be aligned, a right-shift macro can
be called. Addition, subtraction, multiplication, division, and the relational
macros all make use of the alignment macros. Therefore, the right-shift
macro can be heavily used. If you can accept floor behavior for negative
numbers, you could replace the truncate macro with the floor macro, which
can increase the execution speed of the generated code. To do so, modify
the implementation of the (shift-right) macros SHRsbpt, SHRsspt, and
SHRslpt in the sa_fxprv.h file to perform a simple right-shift operation
as follows:

#define SHRsbpt(x,y) ((x) >> (y))

#define SHRsspt(x,y) ((x) >> (y))

#define SHRslpt(x,y) ((x) >> (y))

Chapter 2 C Language Reference

AutoCode Reference 2-36 ni.com

Figures 2-6 through 2-8 show how the conversion macros are named.
Notice that macro names have no embedded spaces.

Figure 2-6. AutoCode/C Conversion Macros for Fixed-to-Fixed Conversions

For example, the macro to convert an unsigned 8-bit number to a signed
8-bit number with a shift of rp bits, and with overflow protection is:

sbALIGNubp(n,rp)

n = Fixed-point operand to align
sr wr ALIGN so wo p q(n, rp)

rp = Number of bits to shift

q = optional answer quantization (r, c, or f)

p = Overflow protection (optional)

wo = Operand wordsize (b=byte, s=short, l=long)

so = Operand sign (u=unsigned, s=signed)

ALIGN (indicates conversion)

wr = Result wordsize (b=byte,

s=short, l=long)

sr = Result sign (u=unsigned, s=signed)

(if rp < 0, perform a left-shift;
if rp > 0, perform a right-shift)

r = round the answer
c = ceiling the answer
f = floor the answer
default (no r, c, or f) is truncate the answer

NOTE: The operand wordsize must be equal
to or larger than the result wordsize

(see NOTE above)

Chapter 2 C Language Reference

© National Instruments Corporation 2-37 AutoCode Reference

Figure 2-7. AutoCode/C Conversion Macros for Fixed-to-Integer Conversions

For example, the macro to convert an unsigned 8-bit number to an integer
number with a shift of rp bits, and with overflow protection is:

iALIGNubp(n,rp)

Figure 2-8. AutoCode/C Conversion Macros for Integer-to-Fixed Conversions

For example, the macro to convert an integer number to a signed 8-bit
number with a shift of rp bits, and with overflow protection is:

sbALIGNip(n,rp)

n = Fixed-point operand to align

 i ALIGN so wo p (n, rp)

rp = Number of bits to shift

p = Overflow protection (optional)

wo = Operand wordsize (b=byte, s=short, l=long)

so = Operand sign (u=unsigned, s=signed)

ALIGN (indicates conversion)

i = Indicates integer result

(if rp < 0, perform a left-shift;
if rp > 0, perform a right-shift)

n = Fixed-point operand to align

sr wr ALIGN i p (n, rp)

rp = Number of bits to shift

p = Overflow protection (optional)

i = Indicates integer input

ALIGN (indicates conversion)

wr = Result wordsize (b=byte, s=short, l=long)

sr = Result sign (u=unsigned, s=signed)

(if rp < 0, perform a left-shift;
if rp > 0, perform a right-shift)

Chapter 2 C Language Reference

AutoCode Reference 2-38 ni.com

Arithmetic Macros
The arithmetic macros perform addition, subtraction, multiplication, and
division. The top level macros for arithmetic operations are present in the
sa_fxm.h and sa_fxmp.h files. These macros in turn call the ALIGN
macros that are defined either in sa_fx.h or sa_fxp.h, depending on
whether or not they are overflow protected. The macros for addition and
subtraction also make use of addition and subtraction functions defined in
sa_fxmp.c.

Figure 2-9 shows how the arithmetic macros are named. Notice that macro
names have no embedded spaces.

Figure 2-9. AutoCode/C Arithmetic Macros

sr wr op _ s1 w1 _ s2 w2 p (n1,n2,rp1, rp2, rp3)

n1 = First fixed-point operand
n2 = Second fixed-point operand
rp1 = Radix position for n1
rp2 = Radix position for n2
rp3 = Radix position for result

p = Overflow protection (optional)

s2= sign of n2 (u=unsigned, s=signed)

w1 = size of n1 (b=byte, s=short, l=long)

w2= size of n2 (b=byte, s=short, l=long)

s1 = sign of n1 (u=unsigned s=signed)

op = ADD, SUB, MUL, or DIV

wr = Result wordsize (b=byte, s=short, l=long)

sr = Result sign (u=unsigned, s=signed)

_ (underscore character; part of macro name)

_ (underscore character; part of macro name)

Chapter 2 C Language Reference

© National Instruments Corporation 2-39 AutoCode Reference

Table 2-7 shows permissible operand and result sizes for the arithmetic
macros.

For example, the macro to add two 8-bit unsigned numbers with overflow
protection and produce an unsigned 8-bit result is:

ubADD_ub_ubp(n1,n2,rp1,rp2,rp3)

The macro to subtract a 16-bit unsigned number from a 16-bit signed
number with overflow protection and produce an unsigned 16-bit result is:

usSUB_ss_usp(n1,n2,rp1,rp2,rp3)

The macro to multiply two 16-bit signed numbers with overflow protection
and produce a 16-bit signed result is:

ssMUL_ss_ssp(n1,n2,rp1,rp2,rp3)

The macro to divide two 32-bit signed numbers with overflow protection
and produce a 32-bit signed result is:

slDIV_sl_slp(n1,n2,rp1,rp2,rp3)

Table 2-7. Arithmetic Macros—Operand and Result Sizes

Operation Operand 1 Size Operand 2 Size Result Size

addition
subtraction
multiplication

byte byte byte or short

short short short or long

long long long

division
(operand 1 is the
dividend; operand 2
is the divisor)

byte byte byte

short byte byte

short short short

long short short

long long long

Chapter 2 C Language Reference

AutoCode Reference 2-40 ni.com

Implementation of the Addition and Subtraction
Macros
AutoCode has two implementations of the addition and subtraction macros:

• Macros that apply wordsize extension (also called extended
intermediate types) to the two operands before aligning the radix
positions and adding or subtracting. This is the default
implementation. Wordsize extension provides greater accuracy, but is
slower because the operations are performed in a larger wordsize than
specified.

• Macros that do not apply wordsize extension.

For example, when using wordsize extension in an 8-bit processor, addition
of two 8-bit operands results in a 16-bit addition operation, because the
8-bit addition macro internally extends the wordsize of the operands from
8 bits to 16 bits.

Not using the wordsize extension on 8-bit and 16-bit processors provides
faster operations. However, you can lose precision if the result radix
position is not smaller than the radix positions of the two operands.
Alignment of the radix positions of the operands to the result radix position
can overflow the 8-bit variable capacity, causing a saturation and loss of
accuracy. Example 2-3 shows this.

Example 2-3 Using Wordsize Extension

Subtraction of fixed-point number n1 = (17, r4) and fixed-point
number n2 = (32, r5), to produce a fixed-point result number n3 with
radix position 7, using 8-bit signed variables for both the operands and the
result.

Method 1: Using Wordsize Extension
In binary representation:

0001^0001 (n1 = (17,r4), decimal value = 1.0625)
—

001^00000 (n2 = (32,r5), decimal value = 1.0)

Extend the wordsize of n1 and n2 to 16 bits, and place the extended results
in n1' and n2':

00000000 0001^0001 (n1' = (17,r4), decimal value = 1.0625)
—

00000000 001^00000 (n2' = (32,r5), decimal value = 1.0)

Chapter 2 C Language Reference

© National Instruments Corporation 2-41 AutoCode Reference

Align the radix positions of n1 and n2 to the radix position of the result
before subtracting (that is, shift n1 left by three bits, and shift n2 left by
two bits). Place the aligned results in n1' and n2' and perform a 16-bit
subtraction of n1' and n2', and store the result in n3':

00000000 1^0001000 (n1'= (136,r7), decimal value = 1.0625)
—

00000000 1^0000000 (n2' = (128,r7), decimal value = 1.0)

00000000 0^0001000 (n3' = (8,r7), decimal value = .0625)

Change the result back to an 8-bit signed number in n3:

0^0001000 (n2 = (8,r7), decimal value = .0625)

Method 2: Not Using Wordsize Extension
In binary representation:

0001^0001 (n1 = (17,r4), decimal value = 1.0625)
—

001^00000 (n2 = (32,r5), decimal value = 1.0)

Align the radix positions of n1 and n2 to the radix position of the result
before subtracting (that is, shift n1 left by three bits, and shift n2 left by
two bits). Place the aligned results in n1' and n2' and perform an 8-bit
subtraction of n1' and n2', and store the result in n3:

sign bit
|

0001^0001 (n1= (17,r4), decimal value = 1.0625)

Detect overflow before aligning to radix position 7, correct overflow (that
is, use maximum number possible)

0^1111111 (n1' = (127,r7), decimal value = .9921875)

001^00000 (n2= (32,r5), decimal value = 1.0)

Detect overflow before aligning to radix position 7, correct overflow (that
is, use maximum number possible)

0^1111111 (n2' = (127,r7), decimal value = .9921875)

0^1111111 (n1' = (127,r7), decimal value = .9921875)
—

Chapter 2 C Language Reference

AutoCode Reference 2-42 ni.com

0^1111111 (n2' = (127,r7), decimal value = .9921875)

0^0000000 (n3 = (0,r7), decimal value = 0.0)

In Example 2-3, method 1 is more accurate than method 2, but it is also less
efficient because it involves a 16-bit subtraction. This is important for
those using 8-bit processors but will probably not be as significant for
those using 16-bit or 32-bit processors.

Method 2 was inaccurate because of the left-shifting that had to be
performed for alignment to the result radix. If the result radix position had
been the same as the radix position of one of the operands, the resultant
value would have been as accurate as with method 1 even though it used
only 8-bit subtraction.

Selecting Wordsize Extension in the Preprocessor
Macro
You can choose whether or not to use wordsize extension in addition
and subtraction by a preprocessor macro in the sa_fxp.h file. The
preprocessor statement:

#define WORDSIZE_EXTEND 1

causes the code to be compiled with wordsize extension. This is the
default. The preprocessor statement:

#define WORDSIZE_EXTEND 0

causes the code to be compiled without wordsize extension.

32-Bit Multiplication and Division Macros
32-bit multiplication and division macros are different from their 8-bit and
16-bit counterparts. This is because the maximum wordsize available is
only 32 bits; therefore, operands cannot be promoted to a higher word
length before or after performing multiplication or division.

32-Bit Multiplication
Before performing the actual multiplication, both operands are split into
upper and lower words. Multiplication is performed in parts—that is,
higher and lower words of each operand are multiplied by each other and
added in a certain fashion to produce a 64-bit intermediate result. This
intermediate result is aligned according to the result’s radix position. After
alignment, if the value cannot be held in 32 bits, the clipped value—that is,

Chapter 2 C Language Reference

© National Instruments Corporation 2-43 AutoCode Reference

the maximum possible value representable in 32 bits—is returned. This
multiplication process can be expensive because it involves several
multiplication and addition operations to produce an intermediate result.
This procedure strives for accuracy, but a user can speed up the process by
giving up some of the accuracy.

32-Bit Division
As with 32-bit multiplication, operands are split into higher and lower
words. This method is based on Euclidean division or repeated division.
The higher and lower words of the numerator are divided by the higher and
lower words of the denominator. The remainder obtained from this step is
repeatedly divided to get components of the quotient. These components
are added up to get the final quotient. As with 32-bit multiplication, this can
be costly because of several addition, division, and multiplication
operations needed to calculate the intermediate results. Again, you can
speed up the routine at the cost of accuracy.

16-Bit by 8-Bit Division
Depending on the radix value of the operands and the result, this operation
might result in either an iterative division or a fast-shift-based division.

For example, let n1 be the dividend with radix value r1, n2 be the divisor
with radix value n2, and n3 be the result with radix value r3. If the term:

r1 – (r2) – (r3) ≤ BYTE_SIZE

where BYTE_SIZE is 8, it will result in a call to an iterative division.
Otherwise, it will be a fast-shift-based division. The iterative division
method is costly in terms of speed, but is needed to compute an accurate
result. By changing this behavior, you can speed up the operation if you are
willing to give up some accuracy.

32-Bit by 16-Bit Division
Depending on the radix value of the operands and the result, this operation
might result in either an iterative division or a fast-shift-based division.

For example, let n1 be the dividend with radix value r1, n2 be the divisor
with radix value n2, and n3 be the result with radix value r3. The following
term:

r1 – (r2) – (r3) ≤ WORD_SIZE

where WORD_SIZE is 16, results in a call to an iterative division. Otherwise,
it will be a fast-shift-based division. The iterative division method is costly

Chapter 2 C Language Reference

AutoCode Reference 2-44 ni.com

in terms of speed, but is needed to compute an accurate result. By changing
this behavior, you can speed up the operation if you are willing to give up
some accuracy.

Note For more information on the implementation of multiplication and division macros,
refer to the SystemBuild User Guide.

Fixed-Point Relational Macros
The relational macros compare two numbers and return a Boolean result
(true or false). Macros for relational operations are defined in sa_fxr.h.
These macros are defined in terms of low-level relational macros present in
sa_fxprv.h.

Figure 2-10 shows how the relational macros are named. Notice that macro
names have no embedded spaces.

Figure 2-10. AutoCode/C Relational Macros

bool op _ s1 w1 _ s2 w2 (n1,n2,rp1, rp2)

n1 = First fixed-point operand
n2 = Second fixed-point operand
rp1 = Radix position for n1
rp2 = Radix position for n2

s2 = sign of n2 (u=unsigned, s=signed)

w1 = size of n1 (b=byte, s=short, l=long)

w2 = size of n2 (must = size of n1; see w below)

s1 = sign of n1 (u=unsigned, s=signed)

op = GT, GE, LT, LE, EQ, NEQ

GT = greater than
GE = greater than or equal
LT = less than
LE = less than or equal
EQ = equal
NEQ = not equal

bool = indicates Boolean relational operation

_ (underscore character; part of macro name)

_ (underscore character; part of macro name)

Chapter 2 C Language Reference

© National Instruments Corporation 2-45 AutoCode Reference

For example, the macro to check an 8-bit unsigned number and an 8-bit
signed number for equality and produce a Boolean result is:

boolEQ_ub_sb(n1,n2,rp1,rp2)

Some Relevant Issues
• The fixed-point macros used by AutoCode-generated files are defined

in the sa files and are available to you for making modifications. If the
AutoCode macros are changed, the results might not match the Sim
results. To change Sim so that the results again match, generate
procedures-only fixed-point code (which uses the AutoCode
fixed-point macros) and, through a UserCode Block (UCB),
automatically link the generated code with the simulation engine.
Refer to the UserCode Block section of Chapter 5, Generated Code
Architecture.

• The fixed-point algebraic operations that involve more than
two operands pose the problem of order dependency of the
operation—that is, the operation can become nonassociative).
For example, the expression y = a + b + c can result in different values
if evaluated as (a + b) + c instead of a + (b + c). Sorting the expression
in a separate loop—for example, in the generated code for the model
summing junction—is not performed by AutoCode due to the
computational overhead. Refer to the SystemBuild User Guide for
more details.

• Because the C preprocessor has a limit on the length of macros,
it can process, the amount of nesting in the macros must be limited.
Therefore, if a summing junction has more than six additions or
subtractions, then in the generated code the additions or subtractions
are broken down into multiple statements, and the intermediate result
is stored in the destination signal (operand). For fixed-point
computations, certain rules are used for coming up with the
intermediate data type. If the summing junction is broken down into
multiple statements in the generated code, the intermediate rules are
influenced by the type of the destination signal (operand) present in
each statement. This might result in some loss of accuracy.

© National Instruments Corporation 3-1 AutoCode Reference

3
Ada Language Reference

This chapter discusses files used to interface AutoCode and the generated
Ada code to your specific platform and target processor. This chapter also
discusses target-specific utilities needed for simulation and testing.

Stand-Alone Simulation
The templates provided for Ada code generation produce code that, when
compiled, form a stand-alone simulation. This simulation can be executed
with MATRIXx data as input, and produces results that can be loaded back
into Xmath for analysis. You must compile the generated code along with
the stand-alone library to produce the simulation executable.

Chapter 2, Using AutoCode, of the AutoCode User Guide describes a
process to compile the code and stand-alone library, generate sample input
data, and load the data into Xmath for analysis.

Supported Ada Compilers for the Stand-Alone Library
Ada’83 is extremely portable. The generated code from either of the
standard templates is in complete conformance with Ada’83 and no
vendor-specific extensions are used. However, there can be variations in
the run-time environments supplied by Ada vendors that require different
implementations, especially related to floating-point and fixed-point
numerics. Three versions of Ada run-time environments that require
slightly different implementations of the stand-alone library. If your Ada
vendor is not specifically listed in Table 3-1, try one of the versions
identified for your platform type. If the code compiles, it will most likely
work. The names of the run-time environments correspond to the names of
directories within the AutoCode distribution.

Chapter 3 Ada Language Reference

AutoCode Reference 3-2 ni.com

Supplied Templates

ada_rt.tpl Template
The ada_rt.tpl template is the default when generating Ada code. This
template uses Ada tasks to implement the scheduling mechanism for the
model. This template supports fixed-point arithmetic.

ada_sim.tpl Template
The ada_sim.tpl template does not use Ada tasks to implement a
scheduler. The subsystems and procedures of a model execute as fast as
possible. This template is similar in design to the c_sim.tpl for C code
generation. The execution results of a model generated using this template
should allow for easier comparison to SystemBuild Simulator results. Also,
the time to execute a model is significantly faster than one based on the
ada_rt.tpl.

ada_fxpt_sys.tpl Template
The ada_fxpt_sys.tpl template is included in the ada_sim.tpl and
ada_rt.tpl templates. This template contains segments that generate the
operator instantiation package. The segments have been modularized to
reduce the impact of fixed-point support in the ada_sim and ada_rt
templates. This template uses the system-level tokens to generate the
operator instantiations.

ada_fxpt_sub.tpl Template
The ada_fxpt_sub.tpl template file can be included instead of the
ada_fxpt_sys.tpl in the ada_sim.tpl and ada_rt.tpl. This
template uses the subsystem/procedure-level tokens to generate the
instantiations. Each subsystem and procedure has a different package and
source file generated.

Table 3-1. Identified Ada Run-Time Versions of the Stand-Alone Library

Platform Stand-Alone Library

Solaris, UNIX Verdix

HP-UX/DOS Alsys

Windows 2000/NT/9x/DOS ActivAda

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-3 AutoCode Reference

Stand-Alone Library
This section describes the system-specific and target-specific stand-alone
(sa_*) files supplied with your system.

System-Specific Files
Header and source files are supplied to interface AutoCode generated code
to your development platform, and to the target processor in your test bed
or rapid-prototyping system.

Both specifications and the source files are provided in your source
directory:

• Specification files have the suffix _.a or _.ada on most UNIX
systems.

• Body files have the suffix .a or .ada on most UNIX systems.

The names of the distribution directories and files are shown in Table 3-2.

Table 3-2. Distribution Directories and Files

Category UNIX Windows

Top-Level Directory $MTXHOME

(Environment variable)
%MTXHOME%

(Environment variable)

Executables Directory: $MTXHOME/bin

Executable: autostar

Directory: %MTXHOME%\bin

Executable: autostar

Utilities Directory: $CASE/ACA/src
Files: sa_*.a or sa_*.ada
Script: compile_ada_sa.sh
Notes: A soft link to Alsys or
Verdix directory.

Directory: $CASE/ACA/alsys
Files: sa_*.ada
Notes: SA files for Alsys Ada
compiler.

Directory: $CASE/ACA/verdix
Files: sa_*.a
Notes: SA files for VERDIX Ada
compiler.

Directory: %CASE%\ACA\src
Files: sa_*.a
Script: compile_ada_sa.bat
Notes: A copy of the Verdix directory
files.

Directory: %CASE%\ACA\alsys
Files: sa_*.ada
Notes: SA files for Alsys Ada
compiler.

Directory: %CASE%\ACA\verdix
Files: sa_*.a
Notes: SA files for VERDIX Ada
compiler.

Chapter 3 Ada Language Reference

AutoCode Reference 3-4 ni.com

• The principal file is sa_utils.a (or sa_utils.ada), the
stand-alone utilities file. When you compile sa_utils.a/.ada,
you must make the following files from the source distribution
directory available locally:

– sa_utils_.a/.adasa_utils.a/.ada

– sa_time_.a/.adasa_time.a/.ada

– sa_math_.a/.adasa_math.a/.ada

– sa_fmath_.a/.adasa_fmath.a/.ada

– sa_types_.a/.adasa_io.a/.ada

– sa_defn_.a/.ada

• If you are compiling to run with the Real-Time/Expert Block, the
following files must be available locally:

– sa_exprt_.a/.adasa_exprt.a/.ada

– sa_aiq_.a/.adasa_aiq.a/.ada

• If you are compiling to run with the Real-Time/Fuzzy Logic Block, the
following files must be available locally:

– sa_fuzzy_.a/.adasa_fuzzy.a/.ada

• If you have defined any hand-written UserCode Blocks, these header
files must be available locally:

– sa_user_.a/.adasa_user.a/.ada

• When you compile your generated code program, all of the previous
files must be available.

For use with generated Ada code, mathematical functions are supplied in
the sa_fmath.a/.ada file, using type RT_FLOAT. A set of auxiliary math
functions that are needed to support AutoCode/Ada generated programs
can be found in the AutoCode/Ada supplied package sa_math.a/.ada.
These functions are required even if they are supported by your native Ada

Templates Directory:
$CASE/ACA/templates

Templates: ada_rt.tpl,
ada_intgr.tpl, ada_sim.tpl

Compiled Template: ada_rt.dac,
ada_sim.dac

Directory: %CASE%\ACA\templates

Templates: ada_rt.tpl,
ada_intgr.tpl, ada_sim.tpl

Compiled Template: ada_rt.dac,
ada_sim.dac

Demos Directory: $XMATH/demos Directory: %XMATH%\demos

Table 3-2. Distribution Directories and Files (Continued)

Category UNIX Windows

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-5 AutoCode Reference

floating-point MATH_LIB. The sa_time.a/.ada file provides the
Elapsed_Time_Of() function.

The purposes of the more important specification files are listed in
Table 3-3.

.

Data Types
Several of the target-specific utilities are involved with data types; three
data types (declared in sa_types.a/ada) are defined for the Ada Code
Generator:

RT_FLOAT Corresponds to Ada type FLOAT.

RT_INTEGER Corresponds to Ada type INTEGER.

RT_BOOLEAN Corresponds to Ada type BOOLEAN.

At compilation, you must make available the specification file
sa_types_.a (or sa_types_.ada), which declares these types, along
with corresponding array types. This file is in the source distribution
directory on your system and you can edit a copy of the file as required.
Certain global record, array, and exception types are also defined in
this file. The record type RT_STATUS_RECORD is declared in
sa_types_.a/.ada and is used when UserCode Blocks are referenced.

Table 3-3. Target-Specific Utility Routines

File Purpose

sa_types_.a Defines the supported data types.

sa_defn_.a Defines constants and error codes for generated code.

sa_utils_.a Defines external function prototypes for the
stand-alone utilities.

sa_math_.a Defines special math functions used by generated
code.

sa_fmath_.a Used only by Verdix compilers to re-export functions
already supported by the Ada math library.

sa_time_.a Declares time-related variables and functions.

sa_user.a Defines function prototypes for UCBs.

Chapter 3 Ada Language Reference

AutoCode Reference 3-6 ni.com

Target-Specific Utilities
The target-specific utilities in the sa_utils.a or sa_utils.ada file
perform hardware-, application-, and Ada-specific tasks that are required
for simulation and testing. They can be modified to support the generated
code on the target computer. As furnished, these routines simulate I/O
operations that would occur in a simulation environment, using import files
created using MATRIXx. These files are to be used unmodified for
comparing your simulations with generated code outputs. However, for
target-system usage on your rapid prototyping or end-user system, these
routines can be modified or rewritten completely and recompiled for the
target system. When you do this, be sure to keep a copy of the unmodified
file and keep separate versions of the files in separate directories. There is
no requirement that the file be named sa_utils.a; however, the name
you use must be specified for compilation and linking. Inside the file, the
names of all the external variables, functions, and other references must be
preserved.

As furnished for this release, the routines are written in Ada, but this is not
required. If you rewrite the routines, they should still be written in a
language that offers direct control of the I/O and interrupt hardware of the
target computer and that can be linked to the object form of the generated
Ada program. Normally, these utilities need to be created only once for
each target computer. In general, a given set of target-specific utilities need
only be changed when the target hardware is modified. The routines are
shown in Table 3-4.

Table 3-4. Target-Specific Utility Routines

Routine Function

Enable() Unmask timer interrupt.

Disable() Mask timer interrupt.

Background() Background polling loop.

Error,fatalerr() Error handlers.

Implementation_Initialize() Initialize I/O hardware and perform other
implementation-specific initialization tasks.

Implementation_Terminate() Perform implementation-specific termination tasks.

External_Input() Collect external inputs.

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-7 AutoCode Reference

The sa_utils.a or sa_utils.ada file contains comments about each of
the routines as they are used for comparing simulation with generated code
results.

Enable(), Disable(), and Background() Procedures
Enable, disable, and background routines are not needed when the
application scheduler is written in terms of the Ada tasking model. They are
furnished as null stubs in the sa_utils.a or sa_utils.ada file. If you
have a system that requires intervention in this area, place the required code
in these procedures.

Error Procedure() Procedure
procedure Error(NTSK: in RT_INTEGER;
ERR_NUM: in RT_INTEGER)

Error() reports conditions detected by the generated code during
execution; not all reported conditions are errors. These functions can be
invoked for deactivating all necessary functions and then passing an alarm
to the external environment or for initiating recovery action. You can
choose either to return from an error function or to halt the machine.

The RT_INTEGER variable ERR_NUM is passed if an error occurs in running
the generated code. The following conditions are trapped. Not all of them
necessarily indicate that an error has occurred. The following messages
may be generated during the execution of the generated code:

Stop Block encountered in task n

This is not necessarily an error. This refers to a SystemBuild Stop
Simulation Block, encountered in the execution of the generated code.

Math Error encountered in task n

Check your model for possible overflows, divisions by zero, and so on.

User code error encountered in task n

External_Output() Post external outputs.

Signal_Remote_Dispatch() Multiprocessor implementations only; signal secondary
processors that a dispatch table is available.

Table 3-4. Target-Specific Utility Routines (Continued)

Routine Function

Chapter 3 Ada Language Reference

AutoCode Reference 3-8 ni.com

Refer to the Chapter 14, UserCode Blocks, of the SystemBuild User Guide
or the source listing of the USR01 routine for meanings of UCB errors. You
are allowed to extend the scope of these messages, so it might be one of
yours.

Unknown error encountered in task n

A possible cause is an incorrect user-written error condition in the
generated code.

Time overflow occurred in task n

This indicates a subsystem (or task) overflow. Also, you might get this
error if the generated real-time code is run on non-real-time systems.

Unexpected error in task n

This message occurs if an error other than any of the previous examples
is encountered.

Implementation_Initialize() Procedure
procedure Implementation_Initialize
(NUMIN:in RT_INTEGER;
 NUMOUT:in RT_INTEGER,
 SCHEDULER_FREQ:in RT_FLOAT)

In the default (simulation comparison) version of the sa_utils.a/.ada
file, this function initializes the inputs and outputs for the system by loading
input data from the user-furnished Xmath {matrixx, ascii} formatted
input file. In the version of this routine that you write to make the generated
code work with the target computer, this routine performs many kinds of
implementation-specific initialization processes for the real-time system.
These processes include:

• Initializing the clock-timer of the target system to request interrupts at
the minor cycle of the control system; that is, the time period required
between interrupts for synchronous operation of the various tasks, as
calculated by AutoCode from the block diagrams

• Initializing the interrupt system of the target computer

• Initializing the math coprocessor, if any

• Setting up shared memory and other hardware-dependent processes

• Initializing I/O hardware

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-9 AutoCode Reference

By default, several error conditions are trapped in the procedure
Implementation_Initialize of sa_utils.a/.ada, but you can
expand this capability in your own versions of the program, detecting your
own error conditions and adding your own messages.

The Ada exception processing facility is used and you are encouraged to
define and raise exceptions in your versions of the
Implementation_Initialize procedure.

The generated messages displayed in the default version of the
sa_utils.a/.ada file are listed below. These messages pertain to the
processing of the input and output files for execution of generated code:

*** File opened is not in Xmath {matrixx, ascii} format.

Load the file into Xmath, save in {matrixx, ascii} format, then try
again.

*** Incorrect file version. Must be at least V7.0.

The input data file was generated using an obsolete version of MATRIXx.
Load the file into Xmath, save it from the Xmath Commands window, and
try again. Notice that V7.0 refers to the version of the file save routine, not
to the version of MATRIXx.

*** Invalid file name

Check to see that the correct Ada file naming conventions are used.

*** Error opening input file

Check to see that the correct Ada file usage conventions are used.

***Input file contains more than two arrays.

***Input time vector has more than one column.

***Input time vector cannot be an imaginary number.

***Input array dimensions must be TIME_POINTS X NUMBER

OF INPUTS

***Input array cannot contain imaginary numbers.

All the previous messages indicate a bad input file.

*** First time point must be zero.

An input time vector must start at zero.

*** Time vector size exceeds storage limit.

*** Input array size exceeds storage limit.

Chapter 3 Ada Language Reference

AutoCode Reference 3-10 ni.com

These messages indicate that the sizes of the time vector and input array
have exceeded one or more of the storage allocation size limits established
by sa_utils.a/.ada. These limits are established as constants at the
very beginning of the stand-alone utilities file, just after the trademark
notice. Refer to the comments in the file and adjust the limits accordingly;
then recompile and relink the utilities file. If the input time vector size is
adjusted, the output time vector must be adjusted to maintain its size as
twice the input time vector. As a rule of thumb, the maximum input values
should be equal to the maximum output values, plus the maximum time
outputs.

*** Output storage exceeds storage limit.

The size of the input file has exceeded the storage allocation size limits
established by sa_utils.a/.ada. This limit is established as a constant
along with the input size limits discussed previously. Refer to the
comments at the beginning of the file and adjust the limits accordingly,
and then recompile and relink.

Implementation_Terminate() Procedure
procedure Implementation_Terminate

In the default simulation comparison version of the sa_utils.a/.ada
file, this procedure completes the I/O processing for the execution of the
system by writing output data to the output file and closing the file.

You can write a version of this routine to make the generated code work
with the target computer. In addition to data completion tasks, this routine
can be called upon to perform many kinds of implementation-specific
shutdown processes for the real-time system. These include:

• Freeing up shared memory and other resources

• Completing the posting of all outputs

• De-initializing I/O hardware

External_Input () Procedure
procedure External_Input(Bus: out RT_REAL_ARRAY;

UE_PTR: in RT_INTEGER;

NUMIN: in RT_INTEGER;

SCHEDULER_STATUS: out INTEGER)

External_Input() is for use in simulation comparison mode.
It samples input data values from an input pool previously loaded into
memory. In the target version of sa_utils.a/.ada, the operation of

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-11 AutoCode Reference

External_Input() is much the same; it returns an input vector from
the software data bus. External_Input() returns the value of
SCHEDULER_STATUS, which is passed to it by the scheduler.

External_Output() Procedure
procedure External_Output(Bus: in RT_REAL_ARRAY;

YE_PTR: in RT_INTEGER;

NUMOUT: in RT_INTEGER;

SCHEDULER_STATUS: out INTEGER)

External_Output is for use in simulation comparison mode. It
places output data values into an output pool in memory. In the target
version of sa_utils.a/.ada, the operation of External_Output()
is much the same; it posts an output vector to the software data bus.
External_Output() returns the value of SCHEDULER_STATUS,
which is passed to it by the scheduler.

UserCode Blocks
This section describes how to link UserCode Blocks (UCBs) with
AutoCode or SystemBuild applications.

Linking Handwritten UCBs with AutoCode Applications
To write the implementation code for UserCode Blocks (UCBs), refer to
the sa_user_.a/.ada and sa_user.a/.ada files, which are provided
in your src directory. These files contain an example of the declaration of
the calling sequence described in the Calling UCBs section. Make one or
more copies of these files and insert your code that implements the
functionality of the UCBs. You can place one or more uniquely named
UCB code procedures inside each copy of the sa_user_.a/.ada and
sa_user.a/.ada files and give the copies any convenient names. If you
include renamed files, place the names in the stand-alone file compilation
script (compile_ada_sa.sh) for automatic compilation.

The computations performed by UCBs can update both block states and
outputs.

Chapter 3 Ada Language Reference

AutoCode Reference 3-12 ni.com

Calling UCBs
Every one of the following arguments will be passed for each call to the
UCB in the following order:

INFO, T, U, NU, X, XD, NX, Y, NY, R_P, I_P

Within the UCB, the elements of all the array variables (U, X, XD, Y, R_P,
I_P) must be accessed as in the following example:

U(U'first), U(U'first+1), ... U(U'first+NU-1)

X(X'first), X(X'first+1), ... X(X'first+NX-1)

Make sure to access the elements in the above manner as all the arrays are
passed as array slices. The sizes of R_P and I_P must be entered in the
UCB block form to ensure that proper storage is allocated in the caller.
Also, the initial conditions for states have to be specified in the form.
Table 3-5 lists the type and purpose of UCB arguments used in the fixed
calling method.

Table 3-5. UCB Calling Arguments and Data Types

Argument Data Type Description

INFO:in out RT_STATUS_RECORD A structure representing operation requests and
status.

T:in RT_DURATION Elapsed time.

U:in RT_REAL_ARRAY An array (of size NU) of inputs to the UCB.

NU:in RT_INTEGER The number of inputs to the UCB.

X:in out RT_REAL_ARRAY An array (of size NX) of state variables of the UCB.

XD:in out RT_REAL_ARRAY An array (of size NX). Defines the next discrete
states of X for discrete subsystems, and the derivative
of X for the continuous subsystems.

NX:in RT_INTEGER The number of states (and next states).

Y:in out RT_REAL_ARRAY An array (of size NX). Defines the next discrete
states of X for discrete subsystems, and the derivative
of X for the continuous subsystems.

NY:in RT_REAL_ARRAY The number of outputs from the UCB.

R_P:in out RT_REAL_ARRAY An array of real parameters.

NRP:in out RT_INTEGER The number of real parameters.

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-13 AutoCode Reference

The operations within UCBs are controlled by the INFO argument, a record
of RT_STATUS_RECORD type that is passed as part of the argument list for
each UCB:

type RT_STATUS_RECORD is
record
ERROR: RT_INTEGER;
INIT: RT_BOOLEAN;
STATES: RT_BOOLEAN;
OUTPUTS: RT_BOOLEAN;
end record;

The following example shows the general form of UCB equations and
indicates how the INFO status record is used to control the computations.

if INFO.INIT then

-- do user code initialization

INFO.INIT := FALSE;

end if;

if INFO.OUTPUTS then

-- do output calculations having the general form:

-- Y := h(T,X,XD,U,R_P,I_P);

end if;

if INFO.STATES then

-- do state update calculations with the general form:

-- XD := f(T,X,XD,U,R_P,I_P);

end if;

When an error occurs within the UCB, set INFO.ERROR:= some nonzero
integer value as an error return. Also, make sure that INFO.INIT is set to
FALSE at the end of the initialization cycle.

To link UCBs (either handwritten or generated) with generated scheduled
subsystem code, compile the UCBs, required sa_* files, and the generated
scheduled subsystem code and link them together to build an application.

I_P:in out RT_INTEGER An array of integer parameters.

NIP:in out RT_INTEGER The number of integer parameters.

Table 3-5. UCB Calling Arguments and Data Types (Continued)

Argument Data Type Description

Chapter 3 Ada Language Reference

AutoCode Reference 3-14 ni.com

Procedure SuperBlocks
This section describes how to generate and link Procedure SuperBlocks.

Generating Reusable Procedures
Generate reusable procedures from your Procedure SuperBlocks as
described in Chapter 2, Using AutoCode, of the AutoCode User Guide.
You have an option to call the generated algorithmic procedures directly
(refer to Example 3-1), passing it pointers to record objects as arguments,
or you can call the hook routine with a fixed UCB calling style interface,
passing it arguments, which are arrays and values. The former option is
more efficient for performance reasons, but the latter provides for
backward compatibility in terms of argument list.

Refer to Chapter 5, Generated Code Architecture, for more information.

Linking Procedures with Real-Time Applications or Simulator
Linking Ada procedures (either handwritten or generated) back
with SystemBuild for simulation requires the use of pragmas or
implementation-dependent features for calling Ada subprograms
from languages other than Ada (refer to Example 3-1).

Example 3-1 Linking Generated Reusable Procedures

-------- Procedure: myproc --------

...

package myproc_pkg is

 ...

 procedure myproc(U : myproc_u_t_P;

 Y : myproc_y_t_P;

 I : myproc_info_t_P);

end myproc_pkg;

...

package body myproc_pkg is

 procedure myproc(U : myproc_u_t_P;

 Y : myproc_y_t_P;

 I : myproc_info_t_P) is

 ...

 begin

 -- Body of the procedure --

 end myproc;

end myproc_pkg;

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-15 AutoCode Reference

-- Wrapper around the procedure to support UCB (Fixed calltype) interface

-- This routine can be called as a UCB either from SystemBuild or AutoCode

-- Map

-- ---

-- Number of Inputs: 2

-- Number of Outputs: 3

-- Number of States: 0

-- Number of Integer parameters: 0

-- Number of Real parameters: 0

-- ...

...

with myproc_pkg; use myproc_pkg;

procedure myproc_hook(

 iinfo : in out RT_STATUS_RECORD;

 TIME : in RT_DURATION;

 U : in RT_FLOAT_AY;

 NU : in RT_INTEGER;

 X : in RT_FLOAT_AY;

 XD : in out RT_FLOAT_AY;

 NX : in RT_INTEGER;

 Y : in out RT_FLOAT_AY;

 NY : in RT_INTEGER;

 R_P : in out RT_FLOAT_AY;

 I_P : in out RT_INTEGER_AY) is

 ...

begin

 ...

 myproc(ptr_of(myproc_12_u'address), ptr_of(myproc_12_y'address),

 ptr_of(myproc_12_i'address));

 ...

end myproc_hook;

Chapter 3 Ada Language Reference

AutoCode Reference 3-16 ni.com

Ada Fixed-Point Arithmetic
This section describes the implementation of fixed-point arithmetic in
AutoCode/Ada. It is assumed that you are familiar with the Ada
programming language.

Note The SystemBuild User Guide has a fixed-point arithmetic chapter that explains the
basics of fixed-point arithmetic and the use of fixed-point arithmetic in SystemBuild
models.

How to Generate Real-Time Code
Using AutoCode, you can generate Ada high-level language code. Refer to
the Template Programming Language User Guide or to Chapter 2, Using
AutoCode, of the AutoCode User Guide for additional information. To
generate code to run on your local host, you can generate code from one of
the following:

• SystemBuild, which lets you automatically generate a real-time file
(.rtf) and then source code from a model, using a Graphical User
Interface. This is the recommended method of generating code to run
on your local host.

• Xmath, which lets you automatically generate an .rtf file and then
source code from a model, using an Xmath command.

• The operating system prompt, which lets you generate source code
from an already-existing .rtf file, using the autostar command
from the operating system prompt.

Fixed-Point AutoCode/Ada Architecture
This section describes the architecture of Fixed-Point AutoCode/Ada.
Consult an Ada language reference manual if you are not familiar with any
of the terms in this section. The basis for this architecture is the use of the
fixed-point type mechanism provided in Ada. This basis enables the use of
generic functions to implement the functionality of standard operations,
such as addition and subtraction. Overloaded operators are created as
instances of the generic functions for only those combinations of
fixed-point data types used in the model. The use of overloaded operators
maximizes code readability.

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-17 AutoCode Reference

Fixed-Point Data Types
Fixed-point type declarations exist in the file named: sa_fxptypes_.a
and is provided in the System-Specific Files src (source) directory.1
This file contains the specification of the SA_FIXED package. The package
specification contains all of the type declarations with the appropriate
delta and range for each type. Refer to the AutoCode Reference for more
information about the fixed-point type sizes, radix ranges and naming
conventions.

Note Ada uses the term delta to describe the accuracy of a fixed-point type.
AutoCode/Ada uses the term radix to denote a type’s accuracy. The relationship between
the two is: delta = 2–radix. Thus, a fixed-point type with a delta of 0.125 is a fixed-point type
with radix 3.

Generic Functions
Generic functions that implement functionality of standard operations
are found in the two files named: sa_fxpgenerics_.a and
sa_fxpgenerics.a. These files provide the specification and body for
the SA_FIXED_GENERICS package. These files are also provided in the
System-Specific Files src directory. These generic functions are the basis
for the creation of the overloaded operators to perform the appropriate
arithmetic operation.

Instantiated Functions
Due to the large number of combinations of operations and fixed-point
types, only those operations that are used in the model are
instantiated—that is, only the instances of the functions that are required by
a model are actually created. Thus, an additional file is created by the code
generator when generating code for a model that uses fixed-point types.
This file is generated from the template. The default template generates one
additional file that contains a package specification containing all of the
instantiated functions for the model. The package name is
RT_FIXED_OPERATORS and the file is named fxp_outputfile_.a,
where outputfile is the name of the model or other name as specified in
a command option to AutoCode.

1 The file name convention uses an underscore before the extension to denote a file containing a package specification.
The .a extension is arbitrary as different platforms use different extensions, like .ada.

Chapter 3 Ada Language Reference

AutoCode Reference 3-18 ni.com

Package Dependencies
The fixed-point AutoCode/Ada architecture forces a dependency among
the supplied and generated code for a model that uses any fixed-point types.
This dependency affects compilation order within an Ada Library.
Figure 3-1 illustrates the imposed dependency. In the figure, a package that
is beneath a package and connected to a package above it by an arrow is
said to be dependent on the package that is above.

Figure 3-1. Package Dependency Graph

SA_TYPES

(Standard types package)

SA_FIXED

(Fixed-point types package)

SA_FIXED_GENERICS

SA_FIXED_GENERICS

Body

RT_FIXED_OPERATORS

(Generated instantiations)

Generated Ada code for

the Model

(Generic functions)

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-19 AutoCode Reference

Generated Code with Fixed-Point Variables
Fixed-point arithmetic operations are accomplished by overloading the
standard arithmetic operators for the fixed-point types. Therefore, the
generated code with fixed-point variables uses the same infix expressions
that non-fixed-point variables normally use, except for the following
modifications:

• The package name must be used when referring to a fixed-point type.

• Explicitly defined conversion functions are used to convert a
fixed-point value to any other numeric type.

• No-Op conversion-like functions are used to disambiguate infix
subexpressions.

• Initialization of fixed-point variables with negative literals use the
pre-defined negate operator to specify a negative value.

• Tests for equality with a fixed-point type are coded using equivalent
logical expressions. The expression a = b will be generated as
(a >= b and a <= b), and the expression a /= b will be
generated as (a < b || a > b), when a and/or b is a fixed-point
type variable or expression.

User Types
A User Type (UT) is a type that is specified using the Xmath User Type
editor and appears in the generated code as a type name. UTs and the
UT editor are described in more detail in the SystemBuild User Guide.

For generated Ada code, all UTs are placed in a package named
USER_TYPES. The package declares a UT as a subtype of the base type of
the UT. For example, the UT named volts is declared in the USER_TYPES
package as shown in Figure 3-1.

subtype volts is SA_FIXED.RT_SBYTE03;

In other words, the data type volts is a subtype of the signed byte with
radix 3 fixed-point type. Notice that UTs are not restricted to fixed-point
base types. The package name must be used to refer to a user type for
declaring variables.

Chapter 3 Ada Language Reference

AutoCode Reference 3-20 ni.com

System-Level Parameters to Generate User Types
Table 3-6 describes new system-level parameters that are used to generate
the USER_TYPES package.

Overflow Protection
Overflow is defined as loss of significance—that is, a computation
resulting in a value that cannot be represented in the range of a specific
fixed-point type. Overflow refers to a value larger than the largest number
in the type range, and underflow refers to a value smaller than the smallest
number in the type range.

For the standard Ada fixed-point types, if an overflow occurs, an exception
is raised. AutoCode/Ada provides the capability to detect and correct an
overflow condition in a fixed-point computation. This is accomplished
within the implementations of the generic functions in the
SA_FIXED_GENERICS package.

The implementation provided for each of the generic functions uses
exception handlers to detect when an overflow occurs. Correction is
performed by examining the values of the function and replacing the
overflowed value with the extreme value for the data type; the largest
number if an overflow, the smallest number if an underflow.

The reliance upon exceptions to detect overflow conditions can be
computationally expensive as it may require a significant number of
machine instructions to handle the exception. As a result, execution times
can suffer. However, if a particular data type used in a calculation is

Table 3-6. System-Level Parameters to Generate User Types

Name Description

n_user_defined_type_i The number of user types in the current
model.

usertype_name_ls An array of strings that contain the
names of all of the user types in the
model. Array size is
n_user_defined_type_i.

usertype_basename_ls An array of strings that contain the
names of all the base types of the user
types of the model. Array size is
n_user_defined_type_i.

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-21 AutoCode Reference

frequently overflowing, a different data type should be selected. If you are
concerned about performance and the use of an exception handler for
detecting overflow, the generic functions can be changed. These changes do
not affect the generated code in any way. Thus, you can freely modify the
generic function implementations without having to regenerate the model.

Caution The provided implementations of the generic functions implement a behavior that
is numerically correct and matches the SystemBuild Simulator’s results. Any change to the
generic functions can severely affect the numeric results of a model. Do not attempt to
change the implementation unless you are fully aware of the intricacies of fixed-point
numerics.

Stand-Alone Files
Support for the AutoCode/Ada Fixed-Point architecture is found within
files in the System-Specific Files src directories. Table 3-7 contains all of
the fixed-point specific files. Notice that the .a extension depends on the
Ada compiler you use.

Compilation Example
This section illustrates the steps required to generate and compile a model
that includes fixed-point types. For the purpose of this example, assume a
top-level superblock name of gaintest.

Table 3-7. Fixed-Point Stand-Alone Files

File Name Package Name Description

sa_fxptypes_.a SA_FIXED Contains all fixed-point type
declarations.

sa_fxpgenerics_.a SA_FIXED_GENERICS Specification of the generic
function.

sa_fxpgenerics.a SA_FIXED_GENERICS Package body that implements the
generic functions.

sa_fxpbit_.a SA_FIXED_BITWISE_FUNCTIONS Package specification containing
bitwise operations on radix 0
fixed-point types.

sa_fxpbit.a SA_FIXED_BITWISE_FUNCTIONS Package body of the bitwise
operations on fixed-point types.

Chapter 3 Ada Language Reference

AutoCode Reference 3-22 ni.com

1. Build a model—Use the SuperBlock Editor to construct a model that
uses fixed-point types for input/output signals. Refer to the
SystemBuild User Guide for more information.

2. Generate real-time code—From the SystemBuild pull-down menus,
select Build»Generate Real-Time Code. In the AutoCode dialog
box, select Ada Code Generation and continue. Example 3-2 shows
a sample transcript that should appear in the Xmath window during
code generation.

Example 3-2 Example Code Generation Transcript

Analyze complete for SuperBlock gaintest.

New Real Time File saved to /home/test/gaintest.rtf

* AutoCode/Ada Code Generator 7.X *

* *

* (C) Copyright 2000. National Instruments Corporation.*

* Unpublished work; Restricted rights apply. *

* All rights reserved. Portions U.S. Patent. *

Loading 'gaintest.rtf' ...

Initializing ...

Building symbols ...

Executing 'ada_rt.dac' :

 Generating procedures package declarations ...

 Generating subsystems package declarations ...

 Generating the scheduler ...

 Generating subsystems package bodies ...

 Generating procedures package bodies ...

Output generated in gaintest.a

 Generating fixed point operators package specification ...

 Generating operator instantiations ...

 Generating conversion instantiations ...

Output generated in fxp_gaintest_.a

Code generation complete

3. Compile the stand-alone files—Before compiling the generated Ada
code, all of the stand-alone files must be compiled into the Ada
Library. Sample scripts are provided to create an Ada Library in the
current working directory and compile all of the stand-alone files into
it. The stand-alone files need only be compiled once into the Ada
Library.

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-23 AutoCode Reference

4. Compile the generated files—Two source files are generated,
gaintest.a and fxp_gaintest_.a, as shown in Figure 3-1. The
imposed package dependencies (refer to the Package Dependencies
section) require that the RT_FIXED_OPERATORS package be compiled
into the Ada Library before the code that represents the model. Thus,
the file fxp_gaintest.a is compiled before gaintest.a.

5. Create an executable—This is the final step and it creates an
executable file. Refer to your Ada compiler documentation on how
to complete this step.

Fixed-Point Type Declarations
Within the SA_FIXED package, all of the supported fixed-point data type
are declared. Table 3-8 summarizes the fixed-point type specifications.

Generic Functions
The generic functions that are used to instantiate overloaded operators and
other functions are found in the SA_FIXED_GENERICS package, which is
found in the sa_fxpgenerics_.a and sa_fxpgenerics.a files.
Table 3-9 summarizes the functions and their purpose. Refer to the package
specification for more details.

Table 3-8. Fixed-Point Data Type Summary

Name1
Radix
Range Delta2

Range2

(smallest .. largest)

RT_SBYTExx –16..48 2.0 ** (–r) –(2.0 ** 7 – r)..((2.0 ** 7 – r) – (2.0 ** (–r)))

RT_UBYTExx –16..48 2.0 ** (–r) 0.0 .. ((2.0 ** 8 – r) – (2.0 ** (–r)))

RT_SSHORTxx –16..48 2.0 ** (–r) –(2.0 ** 15 – r)..((2.0 ** 15 – r) – (2.0 ** (–r)))

RT_USHORTxx –16..48 2.0 ** (–r) 0.0 .. ((2.0 ** 16 – r) – (2.0 ** (–r)))

RT_SLONGxx –16..48 2.0 ** (–r) –(2.0 ** 31 – r)..((2.0 ** 31 – r) – (2.0 ** (–r)))

RT_ULONGxx3 –16..48 2.0 ** (–r) 0.0 .. ((2.0 ** 31 – r) – (2.0 ** (–r)))

1 xx denotes a two-digit number representing the radix, like 03 or 12.

2 r denotes a specific radix.

3 Ada compiler limitations restrict the range of the data types to be the same as if the data types were signed.

Chapter 3 Ada Language Reference

AutoCode Reference 3-24 ni.com

Table 3-9. Generic Function Summary

Function Name Purpose

FIXED_ADD Addition of two fixed-point values.

FIXED_SUB Subtraction of two fixed-point values.

FIXED_MUL Multiplication of two fixed-point values.

FIXED_DIV Division of two fixed-point values.

FIXED_IDENTITY The identity property of a fixed-point
value.

SIGNEDNEGATION Negation for a value of a signed
fixed-point type.

UNSIGNEDNEGATION Negation for a value of a unsigned
fixed-point type.

SIGNEDABS Absolute value for a value of a signed
fixed-point type.

UNSIGNEDABS Absolute value for a value of a unsigned
fixed-point type.

LESSTHAN Tests less-than relation between values
of two different fixed-point types.

GREATERTHAN Tests greater-than relation between
values of two different fixed-point types.

LESSEQUAL Tests less-than or equal to relation
between values of two different
fixed-point types.

GREATEREQUAL Tests greater-than-or-equal-to relation
between values of two different
fixed-point types.

INTCAST Fixed-point value to RT_INTEGER
conversion.

INTCAST_TRUNC Fixed-point value to RT_INTEGER
conversion using truncation.

INTCAST_ROUND Fixed-point value to RT_INTEGER
conversion using rounding.

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-25 AutoCode Reference

LONGINTCAST Fixed-point value to
RT_LONG_INTEGER conversion.

LONGINTCAST_TRUNC Fixed-point value to
RT_LONG_INTEGER conversion using
truncation.

LONGINTCAST_ROUND Fixed-point value to
RT_LONG_INTEGER conversion using
rounding.

BOOLEANCAST Fixed-point value to RT_BOOLEAN
conversion.

INTFIXEDCAST RT_INTEGER to a fixed-point type
conversion.

LONGINTFIXEDCAST RT_LONG_INTEGER to a fixed-point type
conversion.

BOOLEANFIXEDCAST RT_BOOLEAN to a fixed-point type
conversion.

FLOATFIXEDCAST RT_FLOAT to a fixed-point type
conversion.

FLOATFIXEDCAST_TRUNC RT_FLOAT to a fixed-point type
conversion with truncation.

FLOATFIXEDCAST_ROUND RT_FLOAT to a fixed-point type
conversion with rounding.

FIXED_CAST Conversion between two different
fixed-point types.

FIXED_CAST_TRUNC Conversion between two different
fixed-point types with truncation.

FIXED_CAST_ROUND Conversion between two different
fixed-point types with rounding.

NOOPCAST Conversion to the same fixed-point type.

Table 3-9. Generic Function Summary (Continued)

Function Name Purpose

Chapter 3 Ada Language Reference

AutoCode Reference 3-26 ni.com

Bit-Wise Functions
A restricted set of bit-wise operations have been defined for certain
fixed-point types. These functions exist in the
SA_FIXED_BITWISE_FUNCTIONS package found in the sa_fxpbit_.a
and sa_fxpbit.a files. The set of bit-wise operations are the following
three functions: BTEST, BCLEAR, and BSET. BTEST tests the nth bit of a
value. BCLEAR clears the nth bit of a value. BSET sets the nth bit of a value.
The functions are overloaded to accept values that are of a fixed-point type
with radix 0. That includes RT_SBYTE, RT_UBYTE, RT_SSHORT,
RT_USHORT, RT_SLONG, and RT_ULONG. Bit-wise operations on
fixed-point data types can only be done using variable blocks.

Note The Ada templates provided by multiprocessor do not generate code that WITHs or
USEs the SA_FIXED_BITWISE_FUNCTIONS package. If you decide to use any of those
functions, you must modify the template to include both the WITH and USE clauses for this
package. Refer to the Template Programming Language User Guide for information about
the templates.

Instantiated Functions Package
AutoCode/Ada will generate one additional file for a model if it
contains any fixed-point type. This file contains the package for the
RT_FIXED_OPERATORS package. This package contains all of the
instantiations for every overload operator and conversion function that
are used in the model.

Note All of the instantiated functions should have an Ada pragma directive to inline the
function. This eliminates the function call overhead associated with overloading operators.
Due to some Ada compiler inconsistencies, these directives are commented out of the
generated package. A small modification to the template can enable these directives. Refer
to the Template Programming Language User Guide for information about the templates.

Operator Instantiations
The RT_FIXED_OPERATORS package contains instantiations for
overloaded operators. These include the Ada operators: +, -, *, /,
<, <=, >, >=, ABS. The appropriate generic function from the
SA_FIXED_GENERICS package is chosen to instantiate the overload.
Relational operators can be optimized if the data types of both arguments
are the same. In that case, a new function is not instantiated and the
predefined relational operator is renamed so that it is visible.

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-27 AutoCode Reference

Conversion Function Instantiations
The RT_FIXED_OPERATORS package contains instantiations of functions
that represent conversion of values to and from a fixed-point type. The
appropriate generic function from the SA_FIXED_GENERICS package is
chosen to instantiate the function. The name of the instantiated function
follows a convention that indicates what type of conversion is to be done.
Table 3-10 defines the naming convention for conversion functions.

Table 3-10. Conversion Function Naming Conventions

Conversion Type Name1

Fixed to RT_INTEGER RT_YYxx_I

Fixed to RT_INTEGER (truncation) RT_YYxx_It

Fixed to RT_INTEGER (round) RT_YYxx_Ir

Fixed to RT_LONG_INTEGER RT_YYxx_LI

Fixed to RT_LONG_INTEGER (truncation) RT_YYxx_LIt

Fixed to RT_LONG_INTEGER (round) RT_YYxx_LIr

Fixed to RT_BOOLEAN RT_YYxx_B

Fixed to RT_FLOAT RT_FLOAT

RT_INTEGER to Fixed RT_YYxx

RT_LONG_INTEGER to Fixed RT_YYxx

RT_BOOLEAN to Fixed RT_YYxx

RT_FLOAT to Fixed RT_YYxx

RT_FLOAT to Fixed (truncation) RT_YYxxt

RT_FLOAT to Fixed (round) RT_YYxxr

Fixed to Fixed (different types) RT_YYxx

Fixed to Fixed (different types, truncation) RT_YYxxt

Fixed to Fixed (different types, round) RT_YYxxr

Fixed to Fixed (same type, no-op cast) YYxx

1 YY indicates the short name of a fixed-point type xx is the two-digit radix.

Chapter 3 Ada Language Reference

AutoCode Reference 3-28 ni.com

Sample Package
Example 3-3 shows a generated RT_FIXED_OPERATORS package.

Example 3-3 Generated RT_FIXED_OPERATORS Package

-- AutoCode/Ada (TM) Code Generator 7.X --

-- National Instruments Corporation, Austin, Texas --

-- rtf filename : feed.rtf

-- Filename : fxp_feed_.a

-- Dac filename : ada_sim.dac

-- Generated on : Fri Jun 2 14:44:02 1999

-- Dac file created on : Thu Jun 1 16:19:31 1999

--

-- Fixed Point Operator Instantiation Package

--

--

with SA_TYPES;

with SA_FIXED;

with SA_FIXED_GENERICS;

package RT_FIXED_OPERATORS is

 -- Operator Instantiations --

 function "+" is new SA_FIXED_GENERICS.FIXED_ADD(

 SA_FIXED.RT_SSHORT15,

 SA_FIXED.RT_SSHORT15,

 SA_FIXED.RT_SSHORT15,

 SA_FIXED.RT_SLONG15);

 --pragma inline ("+");

 function “-” is new SA_FIXED_GENERICS.FIXED_SUB(

 SA_FIXED.RT_USHORT13,

 SA_FIXED.RT_USHORT15,

 SA_FIXED.RT_SSHORT12,

 SA_FIXED.RT_ULONG12);

 --pragma inline ("-");

 function "-" is new SA_FIXED_GENERICS.FIXED_SUB(

 SA_FIXED.RT_SSHORT12,

 SA_FIXED.RT_SSHORT15,

 SA_FIXED.RT_SSHORT14,

 SA_FIXED.RT_SLONG14);

 --pragma inline ("-");

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-29 AutoCode Reference

function “>=” is new SA_FIXED_GENERICS.GREATEREQUAL(SA_FIXED.RT_SSHORT14,

 SA_FIXED.RT_SSHORT08);

 --pragma inline (">=");

 function ">=" (LEFT, RIGHT : SA_FIXED.RT_SSHORT13) return BOOLEAN

 renames SA_FIXED.">=";

 --pragma inline (">=");

 function RT_US11 is new

SA_FIXED_GENERICS.FLOATFIXEDCAST(SA_FIXED.RT_USHORT11);

 --pragma inline (RT_US11);

 -- Conversion Function Instantiations --

 function RT_US13r is new

SA_FIXED_GENERICS.FLOATFIXEDCAST_ROUND(SA_FIXED.RT_USHORT13);

 --pragma inline (RT_US13r);

 function RT_SS12_It is new

SA_FIXED_GENERICS.INTCAST_TRUNC(SA_FIXED.RT_SSHORT12);

 --pragma inline (RT_SS12_It);

end RT_FIXED_OPERATORS;

Addition and Subtraction Functions
The FIXED_ADD and FIXED_SUB generic functions implement addition
and subtraction of fixed-point types. Unlike the predefined Ada fixed-point
operators, these generics support mixed-type operators, that is, the types of
the operands do not have to be the same. To achieve results as accurate as
possible without introducing overflow requires the use of an intermediate
type in the calculation. The intermediate type is chosen such that the
following properties are maintained: the values of each operand do not
overflow when converted to the intermediate type; the result of the
operation does not overflow when represented in the intermediate type.
If such an intermediate type can be found for the two operands of the
operation, the result is guaranteed to be exact. Therefore, addition and
subtraction uses the intermediate type for the calculation of the result such
that the operations are defined as:

c = a + b ==> c = RESULT_TYPE(IT(a) + IT(b))

c = a - b ==> c = RESULT_TYPE(IT(a) - IT(b))

The two operands are converted to the intermediate type (IT), and then
the operation is performed. Then, the result is converted to the result type
(RESULT_TYPE). Loss of significance can occur when converting to the
result type.

Chapter 3 Ada Language Reference

AutoCode Reference 3-30 ni.com

The selection of the intermediate type is performed by the code generator.
The selection involves a set of rules that rely upon word size extension.
Word size extension is selecting a fixed-point type with a larger number of
bits that can be used to represent model numbers. Also, the radix of the
intermediate type is chosen to be the radix of the result fixed-point type.
For all combinations of all the RT_SBYTE, RT_UBYTE, RT_SSHORT and
RT_USHORT types, word size extension is possible. However, if any of
the RT_SLONG or RT_ULONG fixed-point types is one of the operator’s
operands, word size extension is not possible because there are no 64-bit
fixed-point types. Example 3-4 and Example 3-5 illustrate that accuracy is
maximized when a word-sized extended intermediate type is used in the
calculation.

Example 3-4 Word Size Extended Intermediate Type Subtraction Example

Given: n1 is an RT_SBYTE04, n2 is an RT_SBYTE05 and n3 is an
RT_SBYTE07.

n1 = 1.0625, n2 = 1.0, perform n3 = n1 – n2.

Select intermediate type of RT_SSHORT07 and convert n1 and n2 to that
type resulting in n1a = 1.0625 and n2a = 1.0.

Perform t = n1a – n2a = 0.0625.

Assign n3 = t, performing a conversion from RT_SSHORT07 to
RT_SBYTE07 resulting in n3 = 0.0625

Example 3-5 Result Type As Intermediate Type Subtraction Example

Given: n1 is an RT_SBYTE04, n2 is an RT_SBYTE05 and n3 is an
RT_SBYTE07.

n1 = 1.0625, n2 = 1.0, perform n3 = n1 – 0n2.

Convert n1 and n2 to the type of n3, RT_SBYTE07. Both values of
n1(1.0625) and n2(1.0) are not model numbers of the RT_SBYTE07
type, thus both overflow when converted. The largest model number
is substituted so that n1a = 0.9921875 and n2a = 0.9921875.

Perform n3 = n1a – n2a = 0.0

Note The type that is to be used as the intermediate type is represented as a formal
parameter to the addition and subtraction generic functions. There is no requirement that
the implementation of the function use the intermediate type in the calculation of the result.
However, the default implementations do use the intermediate type.

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-31 AutoCode Reference

Multiplication and Division Functions
The predefined multiplication and division operators for fixed-point type
based arguments are defined in Ada for any combination of fixed-point
arguments. The result of the computation is exact and of arbitrary accuracy.
Thus, a conversion to the result type of the expression must be performed.
During this conversion, accuracy might be lost. The implementation of the
generic functions that perform multiplication and division use the
predefined operators and perform the conversion to the result type.

32-Bit Multiplication
Multiplication of two 32-bit fixed-point numbers might not necessarily be
exact. The problem is that the predefined operator is sometimes unable to
use an extended 64-bit calculation to perform the operation. Thus, the result
might not be exact. As a rule of thumb, if the sum of the radices of the types
of the operands is less than 31, the result should be exact. If that sum is
larger than 31, loss of precision might occur.

Note Computation of 32-bit values is compiler vendor dependent. Results compared
against the equivalent floating-point computation can vary significantly. The only solution
is to upgrade to a version of an Ada compiler that implements more robust fixed-point
numerics.

32-Bit Division
Division of two 32-bit fixed-point numbers might not be exact. The
problem is that the predefined operator is sometimes unable to use an
extended 64-bit calculation to perform the operation. Thus, the result might
not be exact. As a rule of thumb, if the radix of the type of the denominator
is less than 16, the result should be exact; otherwise, loss of precision might
occur.

Conversion Functions
Values from one data type (fixed-point or other type) might need to be
converted to another data type (fixed-point or other type). For any
conversion of a value that has type of lesser accuracy to a type with a
greater accuracy, loss of precision will not occur, but overflow is possible.
For example, a value represented in RT_SSHORT01 converted to
RT_SSHORT03 will not lose accuracy, unless the value overflows.
However, when converting a value that has a type of greater accuracy to
a type that has a lesser accuracy, loss of precision will occur, but there is

Chapter 3 Ada Language Reference

AutoCode Reference 3-32 ni.com

no chance of overflow. To support these issues there are three types of
conversion functions:

• Language-defined conversion

• Truncation conversion

• Explicit rounding conversion

These conversions are described in the following sections.

Language-Defined Conversion
The Ada language provides four data type conversions. The rules in Ada
that govern the conversion are explicit except for one detail. When
converting between different numeric types, values that cannot be exactly
represented in the type are rounded to the nearest model number. A value
that is exactly halfway between two model numbers (that is, at the
midpoint), can be rounded to the larger or smaller model number. The
choice is left to the implementor of the Ada compiler. Instantiated
conversion functions that use the language-defined conversion do not have
a t or r designator at the end of the function name. Refer to Table 3-10.

Truncation Conversion
This type of conversion implements truncation for values that are at the
midpoint between two model numbers. For example, if a value of 1.5 in the
RT_SBYTE01 type is converted to RT_SBYTE, the resulting value is 1.0.
Instantiated functions that implement truncation have a t designator at the
end of the function name. Also, generic functions that use truncation have
the _TRUNC suffix as part of those names.

Explicit Rounding Conversion
This type of conversion implements round away from zero rounding mode
for values that are at the midpoint between two model numbers. For
example, if a value of 1.5 in the RT_SBYTE01 type is converted to
RT_SBYTE, the resulting value is 2.0. Instantiated functions that implement
this rounding mode have an r designator at the end of the function name.
Also, generic functions that use rounding have the _ROUND suffix to those
names.

The choice of which type of conversion function to use depends on the
situation. For example, the Signal Conversion block can use either
truncation or rounding. However, when dealing with fixed-point numerics,
there are many other implicit conversions between data types, such as the
conversion of arguments to an intermediate type for addition or subtraction.

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-33 AutoCode Reference

For these types of conversions, the language-defined conversion is used.
In general, when an explicit conversion is required and there is no
specification of which to choose, AutoCode/Ada will select the explicit
rounding conversion.

Using System-Level Parameters to Generate Instantiations
Before you can use the system-level parameters to generate operator or
conversion instantiations, all of the subsystems and procedures must be
generated. Simply scoping to a subsystem or procedure is not sufficient.
Code must be generated so that the exact operators and conversion used in
the subsystem or procedure can be determined and recorded.

After all of the subsystems and procedures are generated, you must call the
tpl function collect_fxpdata(). Until this function is called, all of
the fxp parameters are empty. After being called, all of the operators and
conversions used in the whole model are placed into the system-level fxp
parameters. No assumptions can be made about the order within a given list
parameter. However, the nth element in one list does relate to the nth
element in another list, depending on the purpose of the lists.

For the fxp_operatorid_li and fxp_conversionid_li parameters,
these contain the type of operator or conversion to be instantiated.
However, the lists might contain duplicates. An operator or conversion
instantiation cannot be declared twice in the package specification. Thus,
duplicate operators or conversions must not be generated. Therefore, any
operator or conversion identifier with a value of 1,000 or larger must not be
instantiated.

In addition to containing all of the operators and conversion for all of the
subsystems and procedures in a model, the list can contain other operators
or conversions that are used in the standard packages, such as the scheduler
or system data package.

Using Subsystem-Level Parameters to Generate Instantiations
Before you can use the subsystem/procedure-level parameters to generate
operator or conversion instantiations, all of the subsystems and procedures
must be code generated. Simply scoping to a subsystem or procedure is not
sufficient. Code must be generated so the exact operators and conversion
used in the subsystem or procedure can be determined and recorded.

After all of the subsystems and procedures are generated, you must call the
tpl function collect_fxpdata(). Until this function is called and a
subsystem or procedure is scoped, all of the sp_fxp parameters are empty.

Chapter 3 Ada Language Reference

AutoCode Reference 3-34 ni.com

The data in the sp_fxp parameters represent the operators and conversion
used in the currently scoped subsystem or procedure. No assumptions can
be made about the order within a given list parameter. However, the nth
element in one list does relate to the nth element in another list, depending
on the purpose of the lists.

For the sp_fxp_operatorid_li and sp_fxp_conversionid_li
parameters, these contain the type of operator or conversion to be
instantiated. The lists can indicate duplicates with respect to all of the
operators or conversion in the model. Therefore, operators that are
indicated to be duplicate are not duplicate with respect to the currently
scoped subsystem or procedure. So, that operator must be instantiated.
This is done by subtracting 1,000 from the value and continuing processing
as normal.

You should loop through all of the subsystems and procedures of a model,
scope it, then generate the operator and conversion instantiations. It is
implied that different packages must be used for each subsystem and
procedure as there might be duplicate operators or procedures between
subsystems and procedures.

System Scope Operators and Conversions
A so-called system scope exists for operators and conversions that are used
somewhere other than a subsystem or procedure. When using the
subsystem-level parameters to generate instantiations, you must also
generate instantiations for these system scope operators and conversions.
Unfortunately, the sp_fxp parameters are not available when scoped to
just a system. Therefore, you must use the system-level parameters to
generate these instantiations.

The system-level parameters will contain all of the operators and
conversions in some order. The only guarantee is that the system scoped
operators and conversions appear in the system-level parameter lists after
all of the subsystem and procedure operators and conversions. Thus, to find
the beginning of the system scoped operators and conversions, you must
compute the sum of all of the subsystem and procedure operators, then the
sum of all of the subsystem and procedure conversions. These two sums
represent the starting index of the system scoped operators and conversions.
The total number of system scoped operators or conversions must be
computed as the difference between the total number of operators or
conversions using the system-level parameters and the computed sum of
the number of subsystem and procedure operators or conversions using the
subsystem-level parameters. For an example, refer to the
ada_fxpt_sub.tpl template.

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-35 AutoCode Reference

Known Ada Compiler Problems
The architecture of AutoCode/Ada Fixed-Point heavily relies upon
overloaded operators and generic function instantiation. For a large and
complex model, the number of overloads and instantiations might
overwhelm some older Ada compilers. Also, problems might occur when
compiling source code from many different models into the same Ada
Library. NI suggests that code from different models be compiled into
separate libraries.

Another problem area might be the declaration of unsigned fixed-point
types. The Ada’83 standard does not include unsigned data types. Newer
Ada compilers do support unsigned types as extensions to the language
definition. If your compiler fails to handle unsigned fixed-point types,
one solution is to avoid using unsigned fixed-point types in the model.
Or, upgrade to a newer Ada compiler.

Another problem might occur with a pragma directive. NI strongly
suggests that the overloaded operators and conversion functions be
specified with the inline directive. This eliminates function call overhead.
However, because those functions are instantiated from generics, older Ada
compilers might not work properly.

Comparing Results to SystemBuild’s Simulator
The SystemBuild Simulator can simulate a model with fixed-point types.
If you compare the stand-alone simulations from an Ada executable, the
results might not match. The following examples are possible reasons and
solutions for the problem:

• Round and Truncation—By default, the SystemBuild Simulator
performs fixed-point data conversions using truncation as the rounding
mode. The Ada language always uses some type of rounding mode
other than truncation. SystemBuild includes a special default
parameter, fixpt_round, which when set to the value of 1, uses a
round to nearest, with midpoint rounded away from zero mode.

• Different Rounding Modes at Midpoint—The Ada language
specifically states rounding mode is to nearest. However, the
specification does not specify rounding when at a midpoint. Table 3-1
shows the possible choices. SystemBuild uses a round to nearest and
away from zero at midpoint. Therefore, if your Ada compiler does not
round away from zero at midpoint, the results from the simulator and
the stand-alone simulation will differ. There is no workaround. The
new Ada standard, Ada’95 specifies round away from zero at
midpoint.

Chapter 3 Ada Language Reference

AutoCode Reference 3-36 ni.com

• Floating-Point Textual Representation—The values generated from
a stand-alone simulation are converted to a textual (ASCII)
representation. That representation in textual form might not quite be
as accurate as possible. That is, the last few digits in the mantissa might
be different than the simulator’s textual representation. There is no
solution other than to upgrade and/or change to a compiler that
converts floating-point numbers to a textual form more accurately.

• 32-bit Computations—Ada specifies that all fixed-point calculations
are exact. However, for 32-bit multiplication and division, there might
be differences in the algorithm used by the Ada compiler vendor.
These differences could affect accuracy when compared against the
SystemBuild Simulator. The simulator uses a 64-bit extended integer
calculation for 32-bit multiplication and division. Therefore,
differences could be a result of 32-bit algorithm differences. It might
be necessary to implement your own 32-bit multiplication or division
algorithm if the error in the predefined Ada algorithm is too large.

No-Op Conversion Function
The purpose of the so-called no-op conversion function is to provide a hint
to the compiler to select the proper overloaded operator. Without such a
hint, there can be situations where the selection of the appropriate
overloaded operator is ambiguous. Simple expressions of the form
a = b op c cannot be ambiguous. However, if a, b, or c is a complex
subexpression, like a = b op c op d, it is possible that there is
insufficient type information to resolve which operator is to be used.
The code in Example 3-6 illustrates the problem and solution.

Table 3-11. Possible Midpoint Round Modes

Mode INTEGER(5.5) INTEGER(–6.5)

Toward 0 5 –6

Away from 0 6 –7

Positive Infinity 6 –6

Negative Infinity 5 –7

To Odd 5 –7

To Even 6 –6

Chapter 3 Ada Language Reference

© National Instruments Corporation 3-37 AutoCode Reference

Example 3-6 Example Code Causing Ambiguous Selection of Overloaded Operators

function "*" (left:SB0; right:SB1) return SL0;

function "*" (left:SB0; right:SB1) return SS0;

function "*" (left:SL0; right:SL0) return SL0;

function "*" (left:SS0; right:SL0) return SL0;

function TO_SLO (left:SL0) return SL0;

V1 : SB0; V2 : SB1: VL:SL0;

begin

VL := V1 * V2 * VL --ambiguous

VL := TO_SL0(V1 * V2) * VL; --unambiguous expression

end;

The first assignment is ambiguous because there is more than one choice of
the overloaded operator function that would satisfy the first multiplication
subexpression. The second assignment is not ambiguous because the
TO_SLO function is unary and not overloaded. Therefore, the unary
function is forcing the V1*V2 subexpression to return a SL0 result. Thus,
there is only one operator that satisfies the second example.

© National Instruments Corporation 4-1 AutoCode Reference

4
Generating Code for Real-Time
Operating Systems

This chapter describes the RTOS configuration file and functionality
provided for generating code for real-time operating systems.

Real-Time Operating System Configuration File
Code that is to execute under the control of a real-time operating system
(RTOS) usually has configuration elements specific to the real-time
environment that are not required for stand-alone code. While it is possible
to modify the template to configure aspects of the RTOS for a particular
model, it is more likely that each model will require different configuration
and will commonly undergo a tuning phase during the development
process. Instead of directly modifying the template, AutoCode includes the
concept of the RTOS configuration file.

The RTOS configuration file is a text file containing tables of information
related to the generated source code components of a model, like
subsystems and non-scheduled procedure SuperBlocks. Each table
contains configuration information about its respective component. Thus,
instead of modifying the template code to reconfigure RTOS information,
you can modify the values in the RTOS configuration file and then
regenerate code. The tables include common aspects related to generating
code for execution under a real-time operating system. The template
programmer is free to define the meaning of the table data in any way;
however, the table names and the template parameter names that contain the
data imply our semantic intent for the use of that data. In the remainder of
this section, we describe the RTOS configuration tables with a focus on our
intended usage of the data and template parameters.

Note The RTOS file cannot be used with any of the -pmap, -smap, -bmap, -imap, or
-prio options.

Chapter 4 Generating Code for Real-Time Operating Systems

AutoCode Reference 4-2 ni.com

Configuration Items
The following is a list of configuration attributes for each type of AutoCode
component.

• Number of processors

• Scheduler priority

• Subsystem Tasks

– Priority

– Stack Size

– Processor

– Mode Flags

• Interrupt Procedure SuperBlocks

– Priority

– Stack Size

– Processor

– Vector

– Mode Flags

• Background Procedure SuperBlocks

– Priority

– Stack Size

– Processor

– Ordering

– Mode Flags

• Startup Procedure SuperBlocks

• Processor

– Ordering

• Processor

– IP Number

Table Syntax
This section provides information about the RTOS configuration tables.

Chapter 4 Generating Code for Real-Time Operating Systems

© National Instruments Corporation 4-3 AutoCode Reference

Table Naming Convention
Tables are given a name to identify the contents of the data contained
therein. Table names are specified in the same form as Xmath variables,
partition.name. RTOS does not look at the partition specifier.
Notice that the name specifier is case sensitive.

Table Column Contents
The contents of a column within a table has a specific data type—for
example, an integer or floating point or string value. For each row in a table,
all columns must contain data of the appropriate type. If a table contains no
rows, it will not appear in the configuration file.

Table Orderings
The tables can appear in any order in the file except the Version Table,
which must be the first table. Also, a table can appear only once in the file.
If the table appears more than once, the data in the first table is used.

File Comments
A line starting with the pound character # denotes the line is a comment.

RTOS Configuration File Contents
The RTOS configuration file consists of named tables of data. Some tables
are single element, while others have one or more columns of data. The
table formats are based on the way Xmath outputs PDM matrix information
into a text file.

Processors Table
Table 4-1 is a single element table consisting of the number of processors
to target for the generated code. The table is named processors.
Example 4-1 shows an example of a processors table.

Table 4-1. Processors Table Contents

Column
Name

Data
Type

Template Parameter
Containing the Data Default Value

N/A Integer nprocessors_i Value used with -np option or 1

Chapter 4 Generating Code for Real-Time Operating Systems

AutoCode Reference 4-4 ni.com

Example 4-1 Processors Table Example

rtos.processors =

 2

Scheduler Priority Table
Table 4-2 is a single element table consisting of the priority assigned to the
scheduler task. The table is named: scheduler_priority. Example 4-2 shows
an example of a scheduler priority table.

Example 4-2 Scheduler Priority Table Example

rtos.scheduler_priority =

 254

Subsystem Table
Table 4-3 lists the configuration information for all subsystem tasks of the
model. Each row is identified with the subsystem task number. The table is
named subsys. Example 4-3 shows a subsystem table.

Table 4-2. Scheduler Priority Table Contents

Column
Name

Data
Type

Template Parameter
Containing the Data Default Value

N/A Integer scheduler_priority_i ntasks+nintrprocs+2

Table 4-3. Subsystem Table Contents

Column
Name

Data
Type

Template Parameter
Containing the Data Default Value

Priority Integer sspriority_li[] scheduler_priority - nintrprocs - n.

Stack Size Integer ssstack_size_li[] 1024

Processor Integer ssprocessor_map_li[] Round-robin
(a sequential, cyclical allocation of resources
to the subsystems)

Mode Flags String ssmode_flags_ls[] None

Chapter 4 Generating Code for Real-Time Operating Systems

© National Instruments Corporation 4-5 AutoCode Reference

Example 4-3 Subsystem Table Example

rtos.subsys =

Subsystem | Priority Stack Size Processor Mode Flags

1 | 200 4096 1 K_NOFATAL

2 | 150 4096 1 K_IO | K_ER

3 | 150 8192 2 K_STO

Caution The SystemBuild Analyzer identifies how many subsystems a particular model
has. AutoCode is limited to providing you with a warning if the subsystems change.
AutoCode can detect if new subsystems are added, but not when they are deleted. For
example, assume a model and RTOS file for subsystems 1, 2, and 3. If subsystem 2 is
deleted and code regenerated using the previous RTOS file, the new subsystem 1 will use
subsystem 1’s configuration. The new subsystem 2 (which was the old subsystem 3) will
use subsystem 2’s configuration. Then, AutoCode will report that subsystem 3’s data is
unused.

Interrupt Procedure SuperBlock Table
Table 4-4 consists of configuration information for all interrupt procedure
SuperBlocks in the model. Each row is identified by the name of the
SuperBlock. The table is named intrsupblk. Example 4-4 shows an
interrupt table.

Table 4-4. Interrupt Table Contents

Column
Name

Data
Type

Template Parameter
Containing the Data Default Value

Priority Integer proc_priority_li[] scheduler_priority - n

Stack Size Integer proc_stack_size_li[] 1024

Processor Integer proc_processor_map_li[] Round-robin
(a sequential, cyclical
allocation of resources to the
interrupt SuperBlocks)

Vector Integer proc_vector_li[] 0

Mode Flags String proc_mode_flags_ls[] None

Chapter 4 Generating Code for Real-Time Operating Systems

AutoCode Reference 4-6 ni.com

Example 4-4 Interrupt Table Example

rtos.intrsupblk =

Interrupt | Priority Stack Size Processor Vector Mode Flags

--

catch_it | 200 4096 1 255 NONE

sigio_io | 150 4096 1 127 I_IO

keypad | 150 8192 2 31 NONE

Background Procedure SuperBlock Table
Table 4-5 consists of configuration information for all background
procedure SuperBlocks in the model. Each row is identified by the name of
the SuperBlock. The table is named bkgdsupblk. Example 4-5 shows a
background table.

Example 4-5 Background Table Example

rtos.bkgdsupblk =

Background | Priority Stack Size Processor Ordering Mode Flags

--

back_1 | 200 4096 1 2 NONE

back_2 | 150 4096 1 1 NONE

Table 4-5. Background Table Contents

Column
Name

Data
Type

Template Parameter
Containing the Data Default Value

Priority Integer proc_priority_li[] scheduler_priority-nta
sks - nintrprocs - 1

Stack Size Integer proc_stack_size_li[] 1024

Processor Integer proc_processor_map_li[] Round-robin
(a sequential, cyclical
allocation of resources to the
background procedure
SuperBlocks)

Ordering Integer proc_ordering_li[] n + 1

Mode Flags String proc_mode_flags_ls[] None

Chapter 4 Generating Code for Real-Time Operating Systems

© National Instruments Corporation 4-7 AutoCode Reference

Startup Procedure SuperBlock Table
Table 4-6 consists of configuration information for all startup procedure
SuperBlocks in the model. Each row is identified by the name of the
SuperBlock. The table is named stupsupblk. Example 4-6 shows a
startup table.

Example 4-6 Startup Table Example

rtos.stupsupblk =

Startup | Processor Ordering

pre_initialize | 1 1

var_update | 1 2

io_init | 2 1

ipc_init | 2 2

Processor IP Name Table
Table 4-7 consists of configuration information, assigning each processor
an IP name. Each row is identified by the processor number. The table is
named IPprsrmap. Example 4-7 shows a processor IP table.

Table 4-6. Startup Table Contents

Column
Name

Data
Type

Template Parameter
Containing the Data Default Value

Processor Integer proc_processor_map_li[] Round-robin
(a sequential, cyclical allocation of
resources to the startup procedure
SuperBlocks)

Ordering Integer proc_ordering_li[] n + 1

Table 4-7. Processor IP Table Contents

Column
Name

Data
Type

Template Parameter
Containing the Data Default Value

IP Number String prsr_ip_name_ls[] 127.0.0.1

Chapter 4 Generating Code for Real-Time Operating Systems

AutoCode Reference 4-8 ni.com

Example 4-7 Processor IP Table Example

rtos.IPprsrmap =

Processor | IP Name

--

1 | 127.0.0.1

2 | 133.65.32.111

Version Table
Table 4-8 is a single element table consisting of the version number of
the format of the configuration tables. The table is named version.
Example 4-8 shows a version table.

Example 4-8 Version Table Example

rtos.version =

 1

Using the Configuration File
Two mutually exclusive command options control the usage of the RTOS
configuration file, -rtos and -rtosf. The -rtos option uses a default
filename as the name of the configuration file to read and keep updated.
This filename is ac_rtos.cfg. Use -rtos to create the configuration file
the first time. Each time AutoCode is executed with the -rtos option,
the default configuration file is updated. This update contains all of the
configuration data that was used to generate code for the model and any
additional AutoCode components—that is, subsystem tasks, nonscheduled
SuperBlocks—in the model that did not have data in the configuration file.

The -rtosf option requires a filename to be specified as an argument.
When this option is used, AutoCode reads data from the file specified,
ignoring the default file. However, when data is updated, the new data is
stored in the file filename.new, where filename is the filename
specified along with the -rtosf option.

If you use an old configuration file with an updated model, AutoCode will
report differences and remove any unused configuration data when the

Table 4-8. Version Table Contents

Column
Name

Data
Type

Template Parameter
Containing the Data Default Value

N/A Integer N/A Latest file version

Chapter 4 Generating Code for Real-Time Operating Systems

© National Instruments Corporation 4-9 AutoCode Reference

configuration file is updated. Also, the updated configuration file is stored
in the same directory where the generated code is placed. Refer to the -o
option.

Caution Comments are not preserved in the default configuration file. Use a different file
and the -rtosf option if you plan to preserve the comments.

Note You must use the template parameters as specified in the previous tables before code
affected by RTOS file settings is generated. The standard C and Ada templates do not have
any of the RTOS template parameters. It is up to a template programmer to integrate the
template parameters in such a way to customize code generation for a particular real-time
operating system. Refer to the Template Programming Language User Guide for template
examples.

© National Instruments Corporation 5-1 AutoCode Reference

5
Generated Code Architecture

This chapter supplies more details about the content and framework of
the generated code. This includes storage usage, various procedures,
specialized blocks, and subsystems. This chapter is directed toward
someone writing his/her own template, interfacing generated code within
a larger system, designing for optimal code size and speed, or being
interested in the generated code architecture. This chapter assumes
familiarity with the C or Ada programming language and standard
programming concepts.

Symbolic Name Creation
AutoCode is very much like a compiler in that it translates a model diagram
(a type of language) into generated code. The requirements of generated
code are somewhat different than that of the model diagram and AutoCode
must resolve these differences and preserve the semantics of the model
diagram.

The symbolic names that appear within the generated code include function
names, variable names, and data types. AutoCode uses the names of
SuperBlocks, blocks, and signal labels/names to derive the symbolic names
for the code that provide maximal traceability from the code back to the
model diagram. AutoCode follows some basic rules when deriving a
symbolic name. These rules are described in the following sections.

Default Names
AutoCode selects a default name for any symbol that does not have a
specific name from the diagram. A default name is a combination of the
block name and block identification number as found in the diagram. If the
block has no name, the enclosing SuperBlock name is used to form the
name.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-2 ni.com

Signal Naming
A signal in the diagram is represented as a variable in the generated code.
Within the diagram, signals can have two names: a label and a name. The
signal’s label can appear in the diagram while a signal’s name does not
appear. If a signal has both a label and a name, AutoCode uses the name to
generate the symbolic name in the generated code. If there is only a label
or a name, AutoCode uses whichever one is specified. If you specify
neither a label nor a name, then AutoCode uses a default name.

Duplicate Names
There is no restriction in the model diagram about reusing the same names
over and over again. However, AutoCode must make sure that the symbolic
names in the generated code are unique. AutoCode solves this problem by
mangling the name of duplicates, that is, appending a suffix to the original
name to preserve uniqueness.

Selection of a Signal Name
In a model diagram, there might be many levels of hierarchy represented as
nested SuperBlocks. SuperBlocks of the same rate are combined into
subsystems and thus are effectively optimized away. Refer to the
Subsystems section for more information. Given that, the labels specified at
the boundary of SuperBlocks are not used. If they were, there would be
extra copies of data because of a name change, which would not represent
optimal code generation. Therefore, within a hierarchy of SuperBlocks, the
label/name from the block that computes the signal is used as the symbolic
name of the variable.

Subsystem and Procedure Boundaries
There are times when the names at the SuperBlock boundary are used. The
names are used only when a definitive interface is created by a SuperBlock.
This occurs when the SuperBlock represents a subsystem boundary or a
Procedure SuperBlock.

Typecheck Feature and Data Types
The Typecheck feature of the SystemBuild Analyzer directly impacts the
data types for signals generated by AutoCode. When the feature is enabled,
data types that are specified in the model diagram will be used in the
generated code. If the feature is disabled, all data types will be considered
float.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-3 AutoCode Reference

Global Storage
In a strict modular programming paradigm, global storage is strictly
avoided. However, global storage can be used safely and provides
significant benefits in terms of code size and speed. Traditionally,
AutoCode generates code that enforces a policy of safe access to global
data. However, the need for potentially unsafe uses of global memory to
achieve tight and efficient production code requires more latitude in the
code generation, and requires a lot of effort to design properly. There is the
possibility of losing determinacy and reentrancy.

Percent vars (%var)
Percent vars represent parameterized data specified within some
SystemBuild Blocks. A %var is generated as a global variable. AutoCode
uses a %var variable in a read-only context. If a %var parameter can be
written to, as in the case of passing parameters to a UCB, duplicate data is
generated to allow the data to change, but at the same time, not affect the
read-only uses. Notice that a %var value can be changed as part of a startup
procedure SuperBlock. Refer to the Startup section for details.

Global Variable Blocks
Global Variable Blocks are implemented as global variables in the
generated code. AutoCode sequences and generates code that provides a
safe and deterministic use of variables blocks. You must generate variable
block callouts to form a critical section to maintain integrity of the global
variable blocks when used in a pre-emptive multi-tasking system. This
safety can be expensive if performance is an issue and you might not get
the behavior you want because of the special sequencing.

Sequencing Variable Blocks
The sequence when a read from and write to a variable block occurs is
critical in maintaining determinacy. The following is a summary of when
the block will execute.

• Read-From Variable Block (ALL Addressing mode)—These
blocks execute before any other type of block within the subsystem,
procedure, or sequence frame. The data from the variable block is
copied into local variables. These local variables are accessed in place
of the actual global variable.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-4 ni.com

• Write-To Variable Block (ALL Addressing mode)—These blocks
execute after all other types of blocks within the subsystem, procedure
or sequence frame.

• Read-From/Write-To Variable Block (Element/Bit Addressing
modes)—These variants to access variable block information are
sequenced just like any other block; that is, it is sequenced after its
inputs have been computed.

Global Variable Block and %var Equivalence
If a Global Variable Block and a %var use the same name, only one
variable is generated and that variable will be used for all instances of the
%var and Variable Block.

Optimization for Read-From Variable Blocks
AutoCode supports an optimization for Read-From Variable Blocks
(Global and Local) that eliminates the copy and directly accesses the local
or global variable. This optimization is optional and the optimization of
global and local variable blocks can be separately controlled. Global
variable block optimization works only if variable blocks are not shared
between multiple subsystems and when the -vbco option is not used.

Global Scope Signal Capability
The memory and performance requirements of real-time production code
force the issue of global variables. AutoCode does not generally use global
variables; rather, it creates and uses stack variables and explicit interfaces.
While that architecture is perfectly sound, it does cause overhead in a
production system. Therefore, AutoCode supports direct use of global
variables for local block outputs within a subsystem. Extending that
concept allows global variable(s) to be used as the inputs and outputs of a
procedure.

Chapter 9, Global Scope Signals and Parameterless Procedures, provides
information about using global scope signals and using global variables as
the input(s) and output(s) of a procedure. Such a procedure is called a
parameterless procedure.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-5 AutoCode Reference

Subsystems
This section describes the design and operation of subsystems. This
includes:

• Discrete and Continuous SuperBlocks Versus Subsystems

• Block Ordering

• Interface Layers

• Scheduler External Interface Layer

• System External Interface Layer

• Discrete Subsystem Interface Layer

• Static Data Within Subsystems

• Pre-init Phase

• Init, Output, and State Phases

• Copy Back and Duplicates

• Error Handling

Discrete and Continuous SuperBlocks Versus Subsystems
A SuperBlock is a SuperBlock Editor concept that acts as a container that
describes a type and/or timing attributes for a set of blocks. There are
various flavors of SuperBlocks, such as Procedure SuperBlocks, which
have different code generation impacts. For the moment, the current
discussion is limited to Discrete and Continuous SuperBlocks.

The SystemBuild Analyzer, which is an internal thread of the Simulator,
translates a model into a representation (.rtf file) that AutoCode and other
applications can understand. One of the primary tasks of the Analyzer
is to create subsystems from SuperBlocks. A subsystem is the set of
SuperBlocks with the same timing attributes; discrete SuperBlocks
form discrete subsystems while continuous SuperBlocks form a single
continuous subsystem. The Analyzer takes the blocks, which the
SuperBlocks identified as one subsystem, and creates a block ordering.
As a result, AutoCode knows nothing about SuperBlocks and can generate
only what the Analyzer partitioned into subsystems.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-6 ni.com

Top-Level SuperBlock
The term Top-Level SuperBlock is often used. This term describes the
SuperBlock that was the root of the Analyzer’s processing of the
SuperBlock hierarchy into subsystems, that is, a starting point for the
translation. AutoCode uses this Top-Level SuperBlock to provide default
names for the entry point of the stand-alone simulation, and more
importantly defines a boundary to determine which signals are the external
inputs and outputs of the system. The Top-Level SuperBlock also gets
translated into a subsystem just like all of the other SuperBlocks.

Block Ordering
Another task of the Analyzer is to determine the execution order of the
basic blocks within a subsystem. In other words, the Analyzer sorts the
blocks. This sequence is controlled by a data-flow analysis of the signal
connectivity of the model. Parallel threads of execution can be sorted in any
order as long as data-flow integrity is maintained. There are special blocks
that have special sequencing requirements (for example,Variable Block)
that the Analyzer sorts.

There is a block called the Sequencer Block that provides additional
information about how to sort the blocks, which allows large-grain control
over sequencing. A Sequencer block divides the diagram into a left-side
frame and a right-side frame. Blocks in the left-side frame are guaranteed
to execute before the blocks in the right-side frame. Blocks within a frame
are sorted based on data-flow and any special rules, just like a subsystem.

Because block ordering is done before AutoCode is invoked, AutoCode
cannot change the ordering of the blocks within the generated code.

Interface Layers
There are three layers of interface within the framework generated by
AutoCode. The three layers are used to support the following:

• Interfacing to hardware

• Data type support

• Multi-rate subsystem communication

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-7 AutoCode Reference

Figure 5-1 illustrates the interface layers. The layers are described in the
subsections shown in the figure.

Figure 5-1. Interface Layering Diagram

Scheduler External Interface Layer
This layer refers to the data directly interfacing with hardware or some
other entity not modeled within the SystemBuild model. This layer is
represented as two arrays of floating-point numbers, one for external inputs
(called ExtIn) and another for external outputs (called ExtOut).

System External Interface Layer
This layer uses two structures, Sys_ExtIn and Sys_ExtOut, to
respectively represent the system external inputs and outputs. Normally,
the Sys_ExtOut structure is optimized out because the scheduler external
outputs are taken from a subset of the subsystem’s external outputs. A
special quality of the System external structures is that the members of
those structures are ordered relative to the Top-Level SuperBlock. In other
words, for example, the fifth external input of the Top-Level SuperBlock
will appear as the fifth variable within the structure. This layer is needed
because this layer represents the actual data types as specified relative to
the Top-Level SuperBlock. Therefore, data copied into and out of this layer
is subject to a data type conversion into the all-float Scheduler interface.

S
ch

ed
ul

er
 E

xt
er

na
l I

np
ut

S
ys

te
m

 E
xt

er
na

l I
np

ut

External
Input

External
Output

SUBSYSTEM

External
Input

External
Output

SUBSYSTEM

S
ch

ed
ul

er
 E

xt
er

na
l O

ut
pu

t

#1

#2 S
ys

te
m

 E
xt

er
na

l O
ut

pu
t

Chapter 5 Generated Code Architecture

AutoCode Reference 5-8 ni.com

Discrete Subsystem Interface Layer
This layer comes in two variations to allow for both an optimized and
general solution. The external interface to a discrete subsystem is
represented by two structures, one representing the subsystem external
inputs and the other the subsystem external outputs. These structures are
generically referred to as the U-structure for the inputs and Y-structure for
the outputs. Within the subsystem, pointers to the U and Y structures are
defined as formal parameters to the subsystem procedure with the names U
and Y, respectively.

Single-Rate System
A single-rate system, (that is, a system that contains only one subsystem
and no disconnected signals) is optimized to eliminate extra copies of the
external input/output data from the System interface. Therefore, a
single-rate model uses the System external inputs as the subsystem’s
external inputs, and the subsystem’s external outputs as the System’s
external outputs.

Multi-Rate System
A multi-rate system represents the general case for external input and
output data. In a multi-rate system, a particular subsystem output might be
used by other subsystems or might be an external system output or some
combination. AutoCode minimizes the connections between subsystems
and the system external output. To accomplish this, AutoCode must
rearrange the ordering of members within the U and Y structures, as
opposed to the order being maintained in the single-rate case.

Sample and Hold
A property of a multi-rate model is the concept of sample and hold. This
refers to the capturing (holding) of the input data of a subsystem until it
completes. For example, in Figure 5-1, assume subsystem 1 executes at
a rate of 0.1 (10 Hz) while subsystem 2 executes at 0.2 (5 Hz). Each
subsystem depends on the other for 1 input. Given that subsystem 1
executes twice as fast as subsystem 2, the output of subsystem 1, used by
subsystem 2, changes during subsystem 2’s execution. This means that
if there were no sample and hold, subsystem 2 could potentially compute
values using different values at different times during the execution of the
subsystem. This non-determinacy can produce unexpected results.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-9 AutoCode Reference

This sample and hold mechanism guarantees deterministic behavior for all
possible connectivities and is implemented using a technique called double
buffering. Double buffering involves swapping of pointers.

Static Data Within Subsystems
The implementation of blocks within a subsystem might require persistent
data. This data can be characterized as look-up tables, parameter
information, as well as data needed to manage the scheduling of the
subsystem. The use of static data prevents subsystems from being safely
used as reentrant code.

iinfo
The iinfo is an array that contains flags that indicate the phase and error
condition of the subsystem. These are used by the scheduler. The phase
might be an initialization, output update, or state computation (INIT,
OUTPUT, and STATES, respectively). Error status is checked for during
the execution of the subsystem and, if a run-time error was detected, a flag
is set.

R_P and I_P
R_P and I_P are static arrays used to store floating point (real) and integer
parameter data, hence their names. Many blocks require static data in the
form of look-up tables, hard-coded parameter data, and initial conditions.
This type of block-specific data from all blocks within the subsystem are
placed within the arrays, depending on the data type of the data. Notice that
fixed-point data is stored in separate arrays to maintain the proper data type
and eliminate data type conversion. It is important to realize that R_P and
I_P data can change during the execution of a subsystem and that to
support a restarting capability on some hardware targets, the initial data is
preserved in a second R_P and I_P array that is only used for initialization.
You can disable the restart capability, which potentially can greatly reduce
the footprint of the object code.

State Data
Another category of data is specifically data related to the state of a block.
State data is differentiated because the semantics of state data are taken
from Control-System theory. Many of the standard blocks rely on the
semantics of state data to properly implement the block’s algorithm. State
data is managed within the subsystem and involves swapping pointers
representing the current and next states.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-10 ni.com

Procedure Data
Procedure SuperBlocks have inputs, outputs and states independent of the
subsystem from which the procedure is called. This is required to properly
implement the characteristics of a procedure; those characteristics include
reusability and reentrancy. Therefore, for each instance of a call to a
procedure SuperBlock within a subsystem, a set of static variables is
created for each of the structures that describe the definition of the
procedure.

Pre-init Phase
The purpose of the pre-init phase is to initialize all of the subsystem’s static
data. This phase is called for each subsystem before the simulation begins,
that is, before time = 0.0.

Init, Output, and State Phases
A subsystem has three phases that can be easily seen in the generated code.
The code related to these phases is guarded by If-statements or comments.
The subsystem can be in multiple phases at the same time.

• Init Phase—Is executed only once at the first time the subsystem is
called. This might be at time = 0.0 but might be later if the subsystem
is skewed, triggered, or enabled. Each block can have code for its
initialization. Activities such as setting initial state and output data are
typical.

• Output Phase—Occurs for each time point for the subsystem. The
purpose of this phase is for each block to compute its outputs for the
current time point. The output phase always occurs before the state
phase.

• State Phase—Occurs for each time point for a discrete subsystem and
can be multiple times for a continuous subsystem. The purpose of this
phase is for each block to compute the value of next state to be used by
the block at the next time point. This phase always occurs after the
output phase.

Copy Back and Duplicates
After all of the code for the three phases has had a chance to execute, there
might be additional code to perform what is called a copy-back, or to deal
with duplicates. This only applies to subsystem external outputs. A
copy-back occurs only in vectorizing code in which part of an array is used
as a subsystem external output. Duplicates can only occur in a single-rate

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-11 AutoCode Reference

system, because ordering of the outputs in a single-rate system is
maintained. In a multi-rate system, duplicates can be safely eliminated
because of the sample and hold mechanism. The code to perform both of
these activities represent a copy from one variable to another.

Error Handling
The error handling within a subsystem is very simple. When an error is
detected, the code goes to (or throws an exception) some error handling
code. The purpose of the error handler is to cope with the error as best it
can. The error handler is completely defined in the template and you can
change the default behavior quite easily. There is only a limited set of
run-time errors that are checked for, but some blocks generate special error
handling when the -e option is specified for code generation.

Standard Procedures
A Standard Procedure SuperBlock represents a reusable, reentrant function
within the generated code. A Standard Procedure is internally structured
almost exactly like a subsystem, except for reusability and reentrancy.

Structure-Based Interface
This form of the interface to the Standard Procedure is conceptually the
same as that of the subsystem. The inputs, outputs and other data are
packaged into structures that are passed by pointer as actual arguments to
the function. The caller is tasked with creating instances of the structures
needed for the interface. The following briefly describes the type of
structures required for this interface.

• Input—Also called the U-structure and contains the inputs of the
procedure. The inputs are in the order specified in the procedure
definition’s external inputs.

• Output—Also called the Y-structure and contains the outputs of
the procedure. The outputs are in the pin-order specified by the
connections of basic blocks to the external output pins of the procedure
definition.

• Info—Provides additional information that is used by the procedure to
maintain reusability and reentrancy. Data includes the R_P and I_P
data for the blocks within the procedure. State data for the blocks
within the procedure appear within this structure as well. The input,
output and info structures of nested procedure SuperBlocks appear as
well. Also, %vars used in the procedure are passed by pointer to
support the partitioning capability of SuperBlocks.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-12 ni.com

Unrolled Interface
There is another form of the procedural interface, the unrolled interface
(No-UY). This interface does not use U- and Y-structures to pass the inputs
and outputs. The input/output signals are passed as separate arguments to
the function.

• Inputs—Each input signal is passed by value to the procedure.
Arguments are passed in pin order.

• Outputs—Each output is passed by reference. Arguments are passed
in pin order.

• Info—The same as described for Info in the Structure-Based Interface
section.

Phases and Error Handling
The phases and error handling within a Standard Procedure is equivalent to
the implementation within a subsystem.

Referenced Percent Variables
There exists a capability in SystemBuild, called partitioning of parameter
(%var) data. Partitioning allows the same SuperBlock to be customized by
using a different Xmath partition containing different values of the
parameter data. Partitioning is used exclusively with SuperBlocks, so
normally AutoCode is unaffected. However, partitioning does apply to
procedures, and special handling must be done within a procedure. For
example, consider a procedure named foo that has %var parameters named
GAIN for a gain block, as shown in Example 5-1. In the topmost
SuperBlock, there are two references to procedure foo, and each reference
specifies a different partition, say A and B. Therefore, when procedure foo
executes from the first reference, the internal gain parameter, GAIN, is
taken from the A partition. Likewise, when the second reference executes,
the parameter GAIN is taken from the B partition.

AutoCode supports this capability by:

• Creating separate variables for the %vars from each partition.

• Having generated code in the procedure indirectly access the
parameter data.

• Having the procedure’s Info-struct include %var references.

• Having the caller initialize the Info-structure with reference to the
appropriate %var.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-13 AutoCode Reference

Note If you specify a specific partition with the %var name in the block form (that is,
A.GAIN), that %var is directly used, not indirectly referenced.

Example 5-1 Relevant Code to Support Partitioned %vars Within a Procedure

/* Xmath variable definitions. */

VAR_FLOAT A_GAIN;

VAR_FLOAT B_GAIN;

/******** Procedures’ declarations ********/

/******* Procedure: foo *******/

/***** Inputs type declaration. *****/

struct _foo_u {

 RT_FLOAT foo_1;

};

/***** Outputs type declaration. *****/

struct _foo_y {

 RT_FLOAT foo_2_1;

};

/***** Info type declaration. *****/

struct _foo_info {

 RT_INTEGER iinfo[5];

 VAR_FLOAT *GAIN;

};

/******* Procedure: foo *******/

void foo(U, Y, I)

 struct _foo_u *U;

 struct _foo_y *Y;

 struct _foo_info *I;

{

 RT_INTEGER *iinfo = &I->iinfo[0];

 /***** Output Update. *****/

 /* ---------------------------- Gain Block */

 /* {foo..2} */

 Y->foo_2_1 = (*I->GAIN)*U->foo_1;

 iinfo[1] = 0;

Chapter 5 Generated Code Architecture

AutoCode Reference 5-14 ni.com

EXEC_ERROR: return;

}

/******* Subsystem 1 *******/

void subsys_1(U, Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

{

 static RT_INTEGER iinfo[4];

 /***** Local Block Outputs. *****/

 RT_FLOAT foo_2_1;

 static struct _foo_u foo_2_u;

 static struct _foo_y foo_2_y;

 static struct _foo_info foo_2_i;

 static struct _foo_u foo_12_u;

 static struct _foo_y foo_12_y;

 static struct _foo_info foo_12_i;

 struct _foo_info *foo_i;

 /******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 foo_2_i.iinfo[0] = iinfo[0];

 foo_2_i.iinfo[3] = iinfo[3];

 /* Copy in variable pointers of procedure foo */

 foo_2_i.GAIN = &A_GAIN;

 foo_12_i.iinfo[0] = iinfo[0];

 foo_12_i.iinfo[3] = iinfo[3];

 /* Copy in variable pointers of procedure foo */

 foo_12_i.GAIN = &B_GAIN;

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

 /***** Output Update. *****/

 /* ---------------------------- Procedure SuperBlock */

 /* {foo.2} */

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-15 AutoCode Reference

 foo_2_u.foo_1 = U->t_l_1;

 foo(&foo_2_u, &foo_2_y, &foo_2_i);

 foo_2_1 = foo_2_y.foo_2_1;

 iinfo[0] = foo_2_i.iinfo[0];

 if(iinfo[0] != 0) {

 foo_2_i.iinfo[0] = 0; goto EXEC_ERROR;

 }

 /* ---------------------------- Procedure SuperBlock */

 /* {foo.12} */

 foo_12_u.foo_1 = foo_2_1;

 foo(&foo_12_u, &foo_12_y, &foo_12_i);

 Y->foo_12_1 = foo_12_y.foo_2_1;

 iinfo[0] = foo_12_i.iinfo[0];

 if(iinfo[0] != 0) {

 foo_12_i.iinfo[0] = 0; goto EXEC_ERROR;

 }

 if(iinfo[1]) {

 SUBSYS_INIT[1] = FALSE;

 iinfo[1] = 0;

 }

 return;

EXEC_ERROR: ERROR_FLAG[1] = iinfo[0];

 iinfo[0]=0;

}

Procedure Arguments
All or some of the following arguments need to be passed for each call to
the procedure in the following order.

U, Y, S, and I
These arguments are pointers to structures reflecting the procedure’s
inputs, outputs, states (including nested procedure states) and
informational data (including nested procedure informational data) used
for communication with the user application or simulation engine.

The inputs to the procedure are provided by the argument U, a pointer to
a structure named _procedure name_u. This structure is composed of
mixed data-typed variables reflecting each procedure input signal and type.

The outputs to the procedure are provided by the argument Y, a pointer to
a structure named _procedure name_y. This structure is composed of

Chapter 5 Generated Code Architecture

AutoCode Reference 5-16 ni.com

mixed data-typed variables reflecting each procedure output signal and
type.

The states of the procedure are provided by the argument S, a pointer to
a structure named _procedure name_s. This structure contains the
double-buffered private states used in the procedure, a flag to toggle the
private states from one buffer to another, and the states structures of all
procedures nested in the procedure. The private states are provided by the
element procedure name_ps, a two-element array of a structure named
_procedure name_ps. The private states structure is composed of mixed
(usually RT_FLOAT) data-typed variables reflecting each state needed in the
procedure. The flag to toggle private states is a variable of type
RT_INTEGER named _procedure name_x whose value is toggled
between 0 and 1 by the subsystem invoking the procedure.

The informational data of the procedure is provided by the argument I,
a pointer to a structure named _procedure name_info. This structure
contains:

• Status and control flags stored in an array named iinfo.

• Time-related information stored in an array named rinfo.

• Block parameter data used by block algorithms in the procedure stored
in arrays named IP or RP.

• Xmath and Variable block variables used in the procedure stored as
pointers to global variables and named after the Xmath variables or
Variable block variables.

In addition, information data of the form described for procedures nested
in the procedure is provided in the _procedure name_i structure as
a pointer to a structure named _nested_procedure name_info.
Table 5-1 and Table 5-2 summarize the elements in structure
_procedure name_info. These elements, which are used by the
procedure, need to be set by the function invoking the procedure.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-17 AutoCode Reference

The parameter arrays RP (real parameters) and IP (integer parameters) in
structure _procedure name_i are used for storing parameter values used
by algorithms of blocks in the procedure. During initialization (that is, INIT
mode is 1), the procedure initializes the IP and RP arrays in the structure
with the necessary values entered in the model.

If Xmath variables are used as %variables in the model as a value in a
block dialog form, or if Variable block variables are used in the model,
the variables used in the procedure are passed through the
_procedure name_info structure as pointers to global variables named
after the Xmath variables used. You need to initialize these pointers.

Table 5-1. Description of Element iinfo in Structure _procedure name_info

Array Element Description

iinfo[0] Error flag.

iinfo[1]=1 INIT mode. Initialize.

iinfo[2]=1 STATE mode. Compute state derivatives.

iinfo[3]=1 OUTPUT mode. Compute outputs in Y.

Note: iinfo is an array of RT_INTEGER containing status and control flags.

Table 5-2. Description of Element rinfo in Structure _procedure name_info

Array Element Description

rinfo[0] Current time in seconds.

rinfo[1] Sample interval in seconds (1.0 if procedure is
invoked from triggered task).

rinfo[2] Initial time skew in seconds (0.0 if procedure is
invoked from triggered task).

rinfo[3] Timing requirement, in seconds, if procedure
invoked from triggered task (0.0 if procedure
invoked from discrete task).

rinfo[4] Start time in seconds.

Note: rinfo is an array of RT_FLOAT containing time-related information.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-18 ni.com

Extended Procedure Information Structure
The -epi option specifies that additional elements to all standard
procedure SuperBlock’s info structure are to be generated. Currently,
only one additional element is generated. It is named caller_id and is of
type RT_INTEGER. Example 5-2 and Example 5-3 show an info structure
declaration (in C) with and without the -epi option. Equivalent structures
are declared when generating Ada code.

Example 5-2 Regular Procedure info Structure Declaration

struct _proc1_info {

 RT_INTEGER iinfo[5];

 RT_FLOAT rinfo[5];

};

Example 5-3 Extended Procedure info Structure Declaration (-epi)

struct _proc1_info {

 RT_INTEGER iinfo[5];

 RT_FLOAT rinfo[5];

 RT_INTEGER caller_id;

};

Caller Identification
The purpose of the caller_id element is to provide the unique identifier
of the caller, that is, the number of the subsystem task, background, startup,
or interrupt procedure SuperBlock. As implied in Example 5-2 and
Example 5-3, all subsystem tasks and nonstandard procedure SuperBlocks
are assigned a unique identifier. Starting with 1, the tasks and procedures
are numbered in this order: subsystem tasks, startup procedures,
background procedures, and interrupt procedures.

Startup procedures are unlike the other procedures in that they are called
only once during the startup phase. Consequently, it has been shown that
easy identification of when a startup SuperBlock is referenced in the
caller_id element simplifies template programming and code
generation. Therefore, startup SuperBlocks are represented as the negative
of the ordering number. For example, assume a model has three subsystem
tasks, three startup procedure SuperBlocks, two background procedure
SuperBlocks, and one interrupt procedure SuperBlock. The ordering is
shown in Table 5-1.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-19 AutoCode Reference

Notice the relative numbering within a task/procedure type. Also, be aware
that standard procedures are not given a unique identifier for the purposes
of the caller_id element. A standard procedure SuperBlock uses the id
of its caller as its own when the caller’s id is needed.

In addition to declaring the extra element in the info structure, the -epi
option causes AutoCode to assign the unique task/procedure identifier to
the caller_id element and to use the caller_id as an argument for
variable block callouts for variable block accesses within a standard
procedure SuperBlock. Refer to the Global Variable Block Callouts section
for more information about variable block callouts.

Compatibility Issues
The use of -epi affects all generated procedures. It is not possible to
specify some procedures with and some other procedures without the
caller_id element. Also, subsystem code generated assumes the
existence of the caller_id element in all standard procedure SuperBlock
info structures and generates code based on that assumption.

You cannot automatically mix procedures generated with the -epi option
and procedures generated without the -epi option; you must manually add
the caller_id element to the old procedure’s info structure declaration.
The old procedure will have been generated without the existence of the
new element and thus its presence in the structure will not affect the
previously generated code as that code never references it. Its effect,

Table 5-3. Procedure Ordering

Task/Procedure Unique Identifier

subsystem task 1 1

subsystem task 2 2

subsystem task 3 3

startup procedure 1 –4

startup procedure 2 –5

startup procedure 3 –6

background procedure 1 7

background procedure 2 8

interrupt procedure 1 9

Chapter 5 Generated Code Architecture

AutoCode Reference 5-20 ni.com

however, is to create additional space when declaring a variable of the info
structure’s type and for the new code generated with the -epi option,
which assumes the field exists in all procedure info structures. However,
the old procedure cannot call a procedure generated with the extended field
in the info structure. Also, if attempting to mix procedures with and
without the extended structure, it is not possible to generate valid code if
the -vbco option is used in conjunction with -epi.

Macro Procedure
Macro Procedure SuperBlocks are intended to provide an in-line code
generation capability like C-macros provide. However, AutoCode does not
generate the definition of the macro procedure. AutoCode only generates a
call to the macro, assuming that the macro is implemented elsewhere. Of
course, the name generated for the Macro Procedure can be the name of the
function rather than a macro, as would always be the case for Ada.

Interface
The interface generated to a Macro Procedure is very similar to the unrolled
Standard procedure interface in that inputs and outputs are actual
arguments to the procedure.

• Macro Name—The name of macro is generated exactly as entered in
the macro string in the block form.

• Additional Arguments—The macro string can contain additional
arguments as specified in the macro string. These arguments are
generated before the explicit inputs and outputs of the block.

• Input—Each of the inputs to the Macro Procedure are listed in pin
order.

• Output—Each of the outputs of the Macro Procedure are listed
following the inputs in pin order. Notice that outputs are not passed by
reference.

Example 5-4 is the generated code for a Macro Procedure. Assume that the
name of the macro is printf; there are two inputs and an optional
argument.

Example 5-4 Sample call generated for a Macro Procedure

/* ---------------------------- User Macro Block */

/* {mac.22} */

printf(“%d %d\n”, U->data_1, U->data_2);

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-21 AutoCode Reference

Asynchronous Procedures
Asynchronous Procedures are procedures that are not regularly scheduled
to be executed or directly called from a subsystem or Standard Procedure.
In other words, these procedures require some entity outside of the scope
of the SystemBuild diagram to invoke them. The following rules apply to
asynchronous procedures, but not necessarily to asynchronous subsystems.
For details about asynchronous subsystems, refer to the AutoCode User
Guide.

These procedures share the following characteristics:

• There are no external inputs and no external outputs.

• Dynamic blocks, that is, blocks with explicit states, are not supported.

• Global variable blocks are the only way to communicate between these
procedures and subsystems.

Interrupt
Some external interrupt event causes an Interrupt Service Routine (ISR) to
call the Interrupt Procedure. You must write all of the mechanisms for your
particular target to achieve this behavior.

Background
This code executes when there is no other activity happening in your
system. Obviously, this implies some kind of policy for the scheduler to
decide when the background procedure should execute. You are required
to implement all of the necessary scheduler mechanisms or use an RTOS.
The scheduler within the standard C and Ada templates executes all of the
background procedures after all of the subsystems execute for each
scheduler minor-cycle.

Startup
This type of procedure performs special initializations. The standard
template-generated code that executes all of the startup procedures before
time = 0.0 but after all of the subsystems have executed their PREINIT
phase.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-22 ni.com

Changing %var Values During Startup
A special feature of the Startup allows the value of a %var to be set at
run-time through a Global Variable Block that has the same name as
the %var.

Condition Block
SystemBuild provides three variations of the Condition Block: Default,
No-Default, and Sequential.

Note AutoCode only supports Standard and Macro Procedures within a Condition Block.
AutoCode does not support inline procedures within a Condition Block.

Default Mode
This mode requires that at least one procedure within the Condition Block
will execute. If there are n procedures, there are only n – 1 conditions and
thus the nth procedure will execute if none of the other procedures execute.

No-Default Mode
This mode does not require that at least one procedure will execute. Rather,
if all of the conditions fail, the results from the last time-cycle are used.
AutoCode stores all of the outputs of the last executed procedure within
R_P to provide this functionality. Type conversions are performed for
non-float data types.

Sequential Mode
This mode independently tests the condition for each of the procedures.
Therefore, all, some, or none of the procedures might execute. If none of
the procedures execute, the outputs are taken from the last time the
procedures executed. Like the no-default mode, the outputs are cached
within the R_P and type conversions are performed for non-float data.

BlockScript Block
The BlockScript block lets you create a custom algorithm within the
context of the block in the diagram. This block uses a scripting language
called BlockScript, which AutoCode can translate into C or Ada code.
BlockScript provides a generalized programming capability for defining
SystemBuild blocks for simulation and code generation.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-23 AutoCode Reference

The BlockScript block allows you to specify conditions and actions, define
block inputs, outputs, and parameters, and specify their data types and
dimensions. BlockScript then writes the update equations that process the
inputs and parameters to produce the outputs. BlockScript I/O can be read
by the Data Dictionary. The BlockScript block is designed for general use;
however, there are special semantics that apply to the translation of the
BlockScript into code that can cause unexpected results if not fully
understood.

Inputs and Outputs
The inputs and outputs of a BlockScript block are represented by a set of
scalars or vectors. If a vector, the vector might be a fixed size, or a size
related to the number of inputs or outputs of the block.

Note The size of the I/O variables and the number of I/O signals of the BlockScript block
are recursively related. If you change one, the other also changes.

Inputs and outputs are declared in two steps:

1. Create the names of the variables to be used as inputs and outputs.
The order of this signature is critical as it provides a mapping to the
input/output pins of the block.

2. Specify the data type and size of the variables.

If you do not specify a data type declaration, BlockScript assumes the
variable is a scalar float. The order within the data type declaration is not
important.

Example 5-5 shows declarations of inputs and outputs.

Example 5-5 Example BlockScript Block Input/output Declarations

inputs : (alpha, beta, gamma);

outputs: result;

float alpha, gamma(5);

integer beta(5), result(10);

inputs : data;

outputs: control;

float data(:), control(data.size);

Chapter 5 Generated Code Architecture

AutoCode Reference 5-24 ni.com

In Example 5-5, alpha, beta, and gamma are the variables to be used as
representations for the inputs. Alpha is a scalar representing the input from
pin 1. Beta is an array of integers representing inputs pins 2 through 6.
Gamma follows as an array of floats representing pins 7 through 10.
The result is just an array of integers representing all of the outputs pins.
Because the sizes are explicit, the BlockScript block with that declaration
can have only 11 inputs and 10 outputs.

In the second set of declarations in the example, data and control are the
input and output variables. The size of data is declared with the colon,
which indicates that the size of the variable is the size specified by its
classification. Since data is an input, then data will be the size of the number
of inputs of the block. The size of control uses a feature of BlockScript that
allows for convenient access to attributes of a variable. In this case, the size
of the variable is used to declare the size of control. Therefore, control will
have the same size as data; hence, the BlockScript block will have the same
number of input signals as output signals.

Environment Variables
BlockScript provides a set of environment variables that represent
read-only values. Some of these values represent the phases of the
subsystem, or some represent data, such as the current time or tolerances.
When translated into code, these variables appear as constant variables.

Local Variables
A local variable is a variable that is used exclusively within the block.
The value of the local variable is not persistent between invocations of the
block. In other words, if the variable is not an input, output, parameter,
or environment variable, the variable is local.

Local variables should have an explicit type declaration. However, if you
do not have an explicit type declaration, AutoCode creates an implicit
declaration of the variable based on its first use within the block, inferring
the data type from that expression. This does not include the first use within
dead code.

Implicit local variable declarations are allowed because of compatibility
with older versions. NI suggests that you always declare your local
variables to eliminate possible data type conflicts.

Note If you intend to generate code with the Typecheck feature disabled (refer to the
Selection of a Signal Name section), you should only use the float data type. If not, there
may be type conflicts when generating code.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-25 AutoCode Reference

Init, Output, and State Phases
A subsystem has phases because the blocks within the subsystem need
phases of computation. The three phases are intended to be used in a
consistent way, just like the standard blocks. There are environment
variables that indicate if a particular phase is active. Therefore, the
canonical usage is that the appropriate environment variable is used as the
guard in an IF statement. This clearly indicates what code is associated with
each phase. The intended usages are listed below.

• Init—The intent is to initialize any local, output, state, or parameter
variable.

• Output—The intent is to only compute the outputs of this block as a
function of some combination of inputs, parameters, or current state.

• State—The intent is to only compute the next state (or state derivative)
as a function of some combination of current state, inputs, outputs, or
parameters.

Caution No validation is performed to ensure that you write code that conforms to the
intended usage of the phases.

In a discrete subsystem, the phases of a block are set in the following way.
The first time the block is executed, the Init, Output, and State phases are
all active at the same time. For subsequent executions, only Output and
State phases are active.

Note Regardless of the order within the script, code for the Output phase always will
execute before code for the State phase.

If the BlockScript block has states, place the Init phase within the Output phase to prevent
a repeat of the initialization during the State phase.

In a continuous subsystem, the Init and Output phases are active for the first
execution. The block can then be executed repeatedly for the State phase,
as the integrator integrates the state data for all blocks. On subsequent time
points, the cycle repeats except the Init phase is no longer active.

Caution Be careful about any side-effects to persistent data within the Init or Output
phases. This can cause mismatches between SystemBuild Simulator and the AutoCode
simulation, because the SystemBuild Simulator might execute the block more than once
at time = 0.0 for the Init/Output phase, whereas the AutoCode simulation only executes the
time = 0.0 Init/Output phase once. Refer to the INITMODE option for the SystemBuild
Simulator for more information about its initialization behavior.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-26 ni.com

Default Phase
If you do not specify a phase and/or all code is not contained within an IF
statement guarded by a phase environment variable, that code is generated
in the Output phase and, if there is a State phase, that code also is generated
in the State phase. Example 5-6 shows the phases.

Example 5-6 Example BlockScript Block Phases

Inputs : u;

Outputs: y;

Environment: (INIT, OUTPUT, STATE);

Parameters: wobble;

States: x;

Next_States: xnext;

float u(10), y(10), wobble(10), x(10), xnext(x.size);

integer i;

if OUTPUT then

 if INIT then

 for i = 1:10 do

 wobble(i) = 0.1*i;

 x(i) = wobble(i) * 3.14;

 endfor;

 endif;

 for i = 1:10 do

 y(i) = u(i) * x(i) / wobble(i);

 endfor;

endif;

if STATE then

 for i = 1:10 do

 xnext(i) = x(i) + (x(i) / wobble(i));

 endfor;

endif;

States
States within a BlockScript block must conform to special semantics
because the subsystem will assume the BlockScript block uses the states as
all of the standard blocks do. State semantics within a discrete subsystem
are different from those of a continuous subsystem. Therefore, it is possible
that a BlockScript block used in a discrete subsystem will not produce
correct results in a continuous system.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-27 AutoCode Reference

Local Variables and Phases
A local variable cannot be used to pass data between phases, because the
different phases occur at different locations in the execution order of the
whole subsystem or procedure. That is, local variables can be reused for
other BlockScript block.

Only inputs, outputs, parameters, and states are guaranteed to be correct
between phases. This is shown in Example 5-7 where, within the STATE
update, the output is used to pass data between the phases.

Discrete Semantics
SystemBuild has two types of state categories for a BlockScript block in a
discrete subsystem: States and Next States. You can specify more than one
variable and different data types for the state variables, as with inputs and
outputs. The State variable(s) are intended to represent state data from the
previous time point. The State variable(s) should only be used for read-only
purposes. The Next State variables are intended to represent the state data
to be used in the next time point. The Next States variables can be both read
and written. The very last thing that a subsystem does is to swap the data
from the Next State variables into State variables for the next time point.
You can view state data as a way to provide double-buffered persistent
data.

Example 5-7 shows how to keep a running total of the input values.

Example 5-7 Discrete BlockScript Block Example (Keeping a Running Total)

Inputs: u;

Outputs: y;

Environment: (INIT, OUTPUT, STATE);

States: current_total;

Next_States: new_total;

float u,y,current_total, new_total;

if OUTPUT then

 if INIT then

 current_total = 0.0;

 endif;

 y = u + current_total;

endif;

if STATE then

Chapter 5 Generated Code Architecture

AutoCode Reference 5-28 ni.com

 new_total = y;

endif;

Example 5-8 Generated Code from Example 5-7

void subsys_1(U, Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

{

 /***** States Array. *****/

 static struct _Subsys_1_states ss_1_states[2] = {{0.0}, {0.0}};

 /***** Current and Next States Pointers. *****/

 static struct _Subsys_1_states *X = &ss_1_states[0];

 static struct _Subsys_1_states *XD = &ss_1_states[1];

 static struct _Subsys_1_states *XTMP;

 /***** Output Update. *****/

 /* ---------------------------- BlockScript Block */

 /* {bsb..2} */

 if (INIT) {

 X->bsb_2_S1 = 0.0;

 }

 Y->bsb_2_1 = U->bsb_1 + X->bsb_2_S1;

 /***** State Update. *****/

 /* ---------------------------- BlockScript Block *

 /* {bsb..2} */

 XD->bsb_2_S1 = Y->bsb_2_1;

 /***** Swap state pointers. *****/

 XTMP = X;

 X = XD;

 XD = XTMP;}

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-29 AutoCode Reference

Continuous Semantics
The state data within a continuous subsystem are called States and State
Derivatives. These look very similar to the discrete equivalents, except that
State data is integrated by the integrator algorithm. This is what is intended
by using states within the continuous system. Therefore, if you just
translated the previous discrete BlockScript block example into using
States and State Derivatives, the results would be quite different. So, States
are more than just persistent data in the continuous subsystem.

Looping Concepts
BlockScript contains features within the language to implement loops.
However, loops have a far-reaching effect on the generated code. This
section describes the effects and limitations of loops in the generated code.

Terminology
The discussion of loops in BlockScript cannot proceed until some terms are
defined. We must introduce the concept of rolled and unrolled loops. A
rolled loop is just a loop in the standard programming sense. An unrolled
loop is not a loop at all. An unrolled loop is the body of the loop generated
for each iteration of the loop. In other words, an unrolled loop is the
expansion of that loop over the range of the loop bounds.

Other terms include soft-subscript and hard-subscript. A soft-subscript
is an array subscript that is run-time bound to another variable. A
hard-subscript is an array subscript that is known during code generation,
that is, a constant value.

Loops and Scalar Code
When AutoCode is used for scalar code generation, code for the
BlockScript must be generated using scalar variables. However, the syntax
of BlockScript uses arrays, especially when referring to the inputs and
outputs of a block. So, when generating scalar code, AutoCode must
translate array variables in BlockScript into a set of scalars. This
transformation causes a significant increase in the size of code as well as
prevents some types of algorithms from being directly implemented. The
scalar representation of BlockScript variables applies to inputs, outputs,
and states. Parameters and local variables of the BlockScript can be either
scalar or arrays. This means that only hard-subscripts can be used with
inputs, outputs, and states for scalar code generation.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-30 ni.com

In Example 5-9, a hard-subscript, i, is used to access both inputs and
outputs. The reason i is a hard-subscript is that the range of i—that is,
the values of 1 through to the number of inputs (u.size)—is known when
the code is generated. AutoCode then can unroll the loop so as to translate
y(i) into a single scalar variable for each value of i. The same is true
for u(i).

Example 5-9 Hard-Subscript Used to Access an Array

Inputs: u;

Outputs: y;

float u(:), y(u.size);

integer i;

for i = 1:u.size do

 y(i) = u(i) * 2*i;

endfor;

In Example 5-10, a soft-subscript, j, is being used to access both inputs and
outputs. That script will not generate code. The reason j is a soft-subscript
is that the range of j, that is, the values of 1 through to the value of the first
input u(1), is not known when code is generated because the upper-bound
of j’s range is the value of the first input. Because the range of j is not
known, AutoCode cannot unroll the loop so as to translate the input/output
arrays into their scalar representation.

Example 5-10 Soft-Subscript Example

Inputs: u;

Outputs: y;

integer u(:), y(u.size);

integer j;

for j = 1:u(1)do

 y(j) = u(j) + j;

endfor;

Rolling Loops with Scalar Code Generation
Although inputs, outputs, and states are translated into scalars, parameters
and local variables of the BlockScript can be either scalar or array variables
in the generated code. Thus, a common trick has been to copy the inputs
and outputs into local variables that are arrays and use those variables for
the algorithm. Refer to Example 5-11.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-31 AutoCode Reference

Example 5-11 Local Variables Used to Allow Loops in Scalar Code Generation

Inputs: u;

Outputs: y;

float u(:), y(u.size), local_u(u.size), local_y(y.size);

integer i,j;

for i = 1:u.size do

 local_u(i) = u(i);

endfor;

for i = 1:u.size do

 for j = i:u.size do

 local_y(i) = local_u(i) + local_u(j);

 endfor;

endfor;

for i = 1:y.size do

 y(i) = local_y(i);

endfor;

Although the generated code is not very efficient, the amount of code that
is generated for Example 5-11 is far less than if the local variables were not
used for the same algorithm.

Vectorized Code
AutoCode can generate vectorized code (refer to Chapter 6, Vectorized
Code Generation) and at the most basic level, it means that arrays will be
used instead of scalar variables. Given that, AutoCode does not have to
translate the BlockScript inputs, outputs, and states into scalars, rather it
will generate arrays. As a result, when AutoCode is generating vectorized
code, the soft-script limitation does not apply. Therefore, if generating
vectorized code, Example 5-10 generates code, and the trick to use local
variable as shown in Example 5-11 is not needed.

Types of Loops
BlockScript provides two different types of loops. Each loop type has a
specific usage that effects what you are allowed to use within the loop
body.

• WHILE Loop—Always generate a rolled loop for both scalar and
vectorized code. A soft-subscript is never allowed to access inputs,
outputs, or states.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-32 ni.com

• FOR Loop—Can generate either a rolled or unrolled loop depending
upon the range of the loop subscript and whether or not scalar code is
generated.

Examples of Rolled and Unrolled Loops

Example 5-12 Unrolled Loop from Example 5-9

/***** Output Update. *****/

/* ---------------------------- BlockScript Block */

/* {bsb..2} */

bsb_1 = indata_1 * 2;

bsb_2 = indata_2 * 4;

bsb_3 = indata_3 * 6;

bsb_4 = indata_4 * 8;

bsb_5 = indata_5 * 10;

Example 5-13 Rolled Loop from Example 5-10, Using Vectorized Code

/***** Output Update. *****/

/* ---------------------------- BlockScript Block */

/* {bsb..4} */

for(j=1; j <= indata[0]; j++) {

 bsb[-1+j] = indata[-1+j] + j;

Table 5-4. Scalar Code Semantics for the Loop Types

Loop Type Soft-Subscript Rolled Loop

WHILE Not for inputs,
outputs, or
states

Always

FOR Not for inputs,
outputs, or
states

No, unless the bounds of the loop are
known and only local variables are
used in the loop body

Table 5-5. Vectorized Code Semantics for the Loop Types

Loop Type Soft-Subscript Rolled Loop

WHILE Not for inputs,
outputs, or states

Always

FOR Yes Yes

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-33 AutoCode Reference

Parameters
Parameters represent data that can be used to provide data to tune the
algorithm by representing coefficients in equations or persistent data
somewhat like states. Parameters are implemented as persistent data when
generated into code. Parameters can be initialized with hard-coded values
or initialized using a %var as specified from the block dialog within the
SuperBlock Editor.

Caution Parameters are designed for read-only data. Do not update a parameter in a
continuous model. It is impossible to predict the number of times a block will be executed
in a continuous system due to multiple calls of the Init, Output, or State phases. Therefore,
it is not known when to update the parameter value. For a continuous system, use the states
mechanism or use an input and output of the block connected to a Variable Block to provide
persistent data.

Using Parameters Instead of States in a Discrete
Model
Although parameters are intended to be read-only data, it is possible within
a discrete model to update a parameter because the execution of a block is
known, that is, a block will be called only once for the Init phase, once for
the Output phase at each time point, and once for the State phase (if it has
states) at each time point.

The benefits of using parameters for persistent data instead of states are
purely code generation related, specifically, reduced amount of code and
reduced amount of data by over 50% as compared to using states. However,
you must change the way the algorithm is coded to properly handle the
parameter update.

Note National Instruments does not recommend that you replace all uses of states with
parameters. Rather, this section points out a special-case method to code a BlockScript
block to produce more efficient code for simple cases of persistent data.

The proper updating of a parameter value is a matter of guarding when the
update of the parameter occurs. For most cases, you will only want to
update the parameter in the Output phase. Thus, the BlockScript code
reflects this as in Example 5-14.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-34 ni.com

Example 5-14 BlockScript Block Example with Updating of a Parameter

Inputs: u;

Outputs: y;

Environment: (OUTPUT, INIT);

Parameters: total;

float u,y,total;

if OUTPUT then

 if !INIT then

 total = total + u;

 else

 total = u;

 endif;

 y = total;

endif;

Notice that you also must prevent an update during the Init phase, which
requires the use of the nested IF statement. Also, the nested IF statement is
used to ensure that the SystemBuild Simulator updates the parameter only
during the Output phase and not the Init phase.

Caution Failure to properly guard the update of the parameter data will cause the
parameter to update more frequently than intended.

Example 5-15 Generated Code for Example 5-14

void subsys_1(U, Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

{

 static RT_FLOAT total = 0.0;

 static RT_INTEGER INIT;

 if (SUBSYS_PREINIT[1]) {

 INIT = 1;

 return;

 }

 /***** Output Update. *****/

 /* ------------------------------ BlockScript Block */

 /* (bsb..22) */

 if (!INIT) {

 total = total + U->bsb_1;

 }

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-35 AutoCode Reference

 else {

 total = U->bsb_1;

 }

 Y->bsb_22_1 = total;

 INIT = 0;

Optimizations
When translating a BlockScript block into source code, certain
optimizations are automatically done. These optimization can reduce direct
traceability from the script to the code at the expense of tighter code.

Constant Propagation/Hard-Coding
A local variable that is assigned a constant value is replaced with its value
when code generates. The name of that constant local variable does not
appear in the generated code. If it is important to see the symbolic name in
the generated code, consider using a parameter instead and -p option for
code generation.

Dead Code Elimination
Code that is guaranteed to never execute is called dead code. When dead
code is detected (as shown in Example 5-16), that code is not translated into
generated source code. You can use this to your advantage by writing the
script in a more general way, taking advantage of special cases when they
occur while not generating dead code. Dead code is most commonly used
by combining constants and if statements. If the guard of the if statement
is a constant, then only one of the two branches is translated into generated
code.

Example 5-16 BlockScript Block Code with Dead Code

Inputs: u;

Outputs: y;

float u(y.size),y(:);

float threshold;

threshold = 0.001;

if threshold < 0.005 then

 for i = 1:y.size do

 y(i) = u(i) / threshold;

 endfor;

else

Chapter 5 Generated Code Architecture

AutoCode Reference 5-36 ni.com

 for i = 1:y.size do

 y(i) = 0.0;

 endif;

endif;

Example 5-17 Generated Code for BlockScript Block Example 5-16

/***** Output Update. *****/

/* ---------------------------- BlockScript Block */

/* {deadbsb..2} */

for (i=1; i<=5; i++) {

 deadbsb[-1+i] = U->deadbsb[-1+i]/0.001;

}

Notice that in the generated code, only the true-branch of the BlockScript
if statement is generated, and that the local variable threshold was
hard-coded.

Implicit Type Conversion
Compared to Ada and even C, BlockScript is a very loosely typed
language. Thus, you can ignore most data type issues and focus on the
algorithm. However, when translated to code, there might be excessive data
type conversions that severely penalize performance. NI recommends that
if you want to maximize the performance of the generated code, you
eliminate any implicit conversions in your BlockScript block.

Special Directives
The BlockScript language allows special directives that force certain
attributes or conditions to be applied. Table 5-6 describes the currently
supported directives.

For more information about BlockScript, refer to the BlockScript User
Guide or the MATRIXx Help.

Table 5-6. BlockScript Special Directives

Directive Description Example

{volatile} Forces the declaration of the listed variable(s)
in the generated code.

{volatile} integer data;

{unroll} Forces the loop to be unrolled instead of
rolled. Only effective when vectorizing code
or when nesting beyond the 8-level limit.

{unroll} for i = 1:10 do

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-37 AutoCode Reference

UserCode Block
The purpose of the UserCode Block (UCB) is to interface your existing
code with AutoCode-generated source code. A UCB is typically used to
access low-level device drivers or any algorithm not easily modeled within
the diagram.

Unfortunately, there are various types of UCBs with slightly different
interfaces. The following two categories divide the types of UCBs:

• UCBs intended to be linked directly back into the SystemBuild
Simulator

• UCBs intended to be linked with AutoCode-generated code

For a discussion of the details of the UCB interface, refer to Chapter 2,
C Language Reference, and Chapter 3, Ada Language Reference.

Phases of the UCB
The UserCode Block has Init, Output, and State update phases. Due to
reasons of efficient code generation in a discrete system, more than one
phase may be enabled for a call to the UCB. Specifically, a UCB in a
discrete system will have both Output and State phases enabled during the
same call to the UCB. In a continuous system, the Output and State phases
are not enabled during the same call and thus the UCB is called once for the
Output phase then again for the State phase.

You can prevent potential problems by coding your UCB such that the code
for each of the phases is in the following order: Init, Output, then State.

Indirect Terms
If any of the terms of a UCB are specified as indirect, either in a continuous
or a discrete model, the UCB will be called twice within the subsystem,
once for just the Output phase and then once for the State phase.

Note It is possible to get warnings about using a variable before it is set when compiling
code which contains UCBs with indirect terms. This is because the UCB will be ordered
in such a way that the inputs to the indirect terms have not been computed. This is exactly
what is meant with indirect terms and this warning will not cause a computational error,
assuming the UCB obeys its own indirect term specification.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-38 ni.com

Parameterized UCB Callout
A UCB can be defined with %var parameterized data for the UCB’s real
parameters (RP) and integer parameters (IP). When used, AutoCode
generates code that passes the %var variable as the actual of the UCB
callout. A new option, -ucbparams, creates a temporary array within the
subsystem code and passes the temporary arrays as actuals of the UCB
callout. The temporary arrays are initialized with the values of the %var
when the code was generated. Using the temporary arrays allows the UCB
to change its RP/IP parameters without affecting the %var.

Example 5-18 clarifies this. Assume a UCB is parameterized with the %var
named floatdata for the UCB’s real parameters and the %var named
integerdata for the UCB’s integer parameters.

Example 5-18 Relevant Code for UCB Call

/*-------------------------------------*/

/* USRxx(INFO,T,U,NU,X,XDOT,NX,Y,NY,RP,IP) */

 usr01(&I->usr01_13_i, TIME, &usr01_13_u[0], 1, &dummp_f[0],

 &dummy_f[0], 0, &usr01_13_y[0], 1, &floatdata[0],

 &integerdata[0]);

/*-------------------------------------*/

Relevant code for UCB call with -ucbparams option

/*--*/

 static RT_INTEGER I_P[4];

 static RT_FLOAT R_P[3];

 static const RT_INTEGER _I_P[4] = {3, 5, 30, 40};

 static const RT_FLOAT _R_P[3] = {2.05, 3.45, 7.63};

 if (SUBSYS_PREINIT[1]) {

 for(cnt=0;cnt<4;cnt++) {

 I_P[cnt] = _I_P[cnt];

 }

 for(cnt=0;cnt<3;cnt++) {

 R_P[cnt] = _R_P[cnt];

 }

 }

 /* USRxx(INFO,T,U,NU,X,XDOT,NX,Y,NY,RP,IP)*/

 usr01(&I->usr01_13_i, TIME, &usr01_13_u[0], 1, &dummp_f[0], &dummy_f[0],

 0, &usr01_13_y[0], 1, &R_P[0], &I_P[0]);

/*--*/

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-39 AutoCode Reference

Software Constructs
These blocks provide the software constructs that are typically found in any
imperative programming language such as C, Pascal, and FORTRAN. The
following software constructs are supported in SystemBuild and
AutoCode:

• IfThenElse Blocks (for conditional execution)

• WHILE Blocks (for iterative computations)

• Sequencers (for sequencing purpose)

• Local Variable Blocks (for storing temporary data)

For the highest level of flexibility, the designs of the software construct
block require you to handle all of the details in implementing your
algorithm.

IfThenElse Block
The IfThenElse Block has two sections: one section contains the condition
to be evaluated and the other contains blocks that need to be executed if the
condition evaluates to True. An ELSE-IF or ELSE Block can be associated
with an IfThenElse Block. An ELSE-IF Block has a condition section while
an ELSE Block does not have one.

An IfThenElse Block in the block diagram along with the associated
ELSE-IF and ELSE Blocks is generated as an if-else, if-else
compound statement in C and as an if-elsif-else statement in Ada.
For every if and else, if statement, the corresponding condition is
generated, followed by a branch that contains code for the blocks contained
in it. Block ordering with a container frame is just like that of a subsystem.

Variable Blocks must be used to get data out of the computations within the
IF branches, because there may be different numbers of outputs computed
from each branch. It is recommended that host local variable blocks be used
for this purpose.

WHILE Block
The WHILE block is a construct that allows a set of blocks to be repeatedly
executed during the subsystem’s scheduled time-frame during one
invocation of a subsystem or a procedure. AutoCode implements this
construct as a while statement in C and as a loop statement in Ada.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-40 ni.com

BREAK Block
The WHILE construct indefinitely iterates unless a BREAK Block is
executed within the loop. You are responsible for properly detecting an exit
condition and using it as an input to a BREAK Block inside the loop. If the
input to the BREAK Block is TRUE, then the loop that is immediately
enclosing the BREAK Block is exited. This block is implemented as a
break statement in C and as an exit statement in Ada.

CONTINUE Block
A CONTINUE Block provides another way to control the execution of
blocks within a loop. By using a CONTINUE Block, the execution can be
immediately continued with the next iteration, instead of executing blocks
that follow the CONTINUE Block. You are responsible for detecting a
continue condition and using it as an input to a CONTINUE Block inside
the loop. The CONTINUE Block continues execution with the next
iteration if its input evaluates to TRUE. This construct is implemented as a
continue statement in C, while a goto statement is used in Ada, and the
target of the goto is the first statement in the loop.

Like the IfThenElse Block, the requirements for an iteration mechanism are
varied, and our design allows for the most flexible algorithm design at the
expense of increased diagram complexity to specify all of the details about
the sequencing and termination within the loop.

Local Variable Block
Local Variable Blocks are implemented as automatic variables in the
generated code. They are strictly temporary and are used to pass data from
one computation to another. The Scope of a local variable block is local to
that of the enclosing subsystem or procedure. The local variable block is
active only when the enclosing procedure or subsystem is invoked.

Thus, Local Variable Blocks cannot be used to communicate data between
procedures or subsystems, but could be used to communicate data from one
SuperBlock to another if both SuperBlocks are mapped to a single
subsystem. Refer to subsystem mapping information described in the
Subsystems section. Also, the recommended way of passing data from one
software construct to another, or from a software construct to the
SuperBlock in which it is contained, is through local variables.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-41 AutoCode Reference

The Read from Variable Block optimization also is supported for Local
Variable Blocks. Refer to Chapter 7, Code Optimization, for more details
on optimization. Also, the sequencing of local variable blocks is similar to
that of global variable blocks explained in the Global Variable Blocks
section.

Sequencer Block
These blocks are used in the model to control the execution order of blocks.
The sequencer block makes sure that all of the blocks to its left are executed
before the blocks to its right are executed. In the generated code there is no
representation of sequencer blocks, but their presence forces AutoCode to
generate code for the blocks that are to its left first, followed by the blocks
that are to its right. Refer to the Block Ordering section.

Difference Between Local and Global Variable Blocks
Local and Global variable blocks are identical except for their lifetime and
scope.

Scope
Global variable blocks are implemented as global variables and are
visible throughout the system (have system scope). Local variables are
implemented as automatic variables, which are strictly temporary. The
scope of a local variable is local, that is, it is only visible to the procedure
(or subsystem) where it is defined and used.

Lifetime
The value of a global variable block persists until the program is
terminated. On the other hand, the value of a local variable is not
remembered from one invocation of a procedure (or subsystem) to the
subsequent invocation. Local Variable blocks have to be initialized
properly before they can be used.

Continuous Subsystem
For AutoCode purposes, a continuous subsystem is similar to a discrete
subsystem. However, whereas a model can have several discrete
subsystems, a model can only contain one continuous subsystem. This
limitation is required to prevent unexpected results of the execution order.
From a continuous point of view, the continuous subsystem is

Chapter 5 Generated Code Architecture

AutoCode Reference 5-42 ni.com

representative of a sequence of equations. These equations are sensitive
(that is, potentially numerically unstable) to the integration algorithm and
order in which the equations are computed. Introducing multiple
continuous subsystems or procedures introduces arbitrary boundaries
within the equation sorting that can affect the stability of the total system.
Another reason for having only a single continuous subsystem is to
minimize the complexity of the integration algorithm.

Explicit Phases
As in a discrete subsystem, a continuous subsystem also has an Init, Output,
and State phases. However, after comparing the code generated for the
different subsystem types, you will see that there are explicit guards
protecting each phase within the continuous subsystem. This is required
because each of the phases might be called more than one time for a
particular time point and independently from each other.

Integrator
A continuous subsystem does not have a period rate to be executed. Rather,
we use a continuous sampling rate (CSI) to indicate the frequency of the
computation of the continuous subsystem. In a real-time environment, you
must make sure the CSI is large enough to account for computation delay.
The scheduler uses the CSI to pass control over to an integrator. The
integrator is responsible to call the continuous subsystem for each state
computation of the integration algorithm.

Limitations
The following is a summary of limitations of the generated code for a
continuous subsystem.

• Only fixed-step integrators are supported.

• There is a slight mismatch between SystemBuild Simulation results
and AutoCode simulation results. AutoCode does not interpolate the
inputs between the explicit time in the time-vector (t) and the time
(t + h), where h is the integration interval. AutoCode integrators keep
the inputs constant at those points.

• States and derivatives within a continuous subsystem are always
RT_FLOAT data type, which is usually defined within the Stand-Alone
Library as double-precision.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-43 AutoCode Reference

• Algebraic loops are not supported.

• AutoCode only performs a single initialization pass at time = 0.0. This
corresponds to the SystemBuild Simulation options of INITMODE=0 or
ACTIMING.

Multiprocessor Code Generation
Generation for a multiprocessor target is supported by AutoCode by
heavily relying on a specialized template to generate a framework for the
target. For the most part, generating for multiple processors does not affect
the generated code within subsystems. However, the major differences start
to appear when handling the data for subsystem interfaces, %vars, Variable
Blocks, and asynchronous procedures.

Note A multiprocessor template is not provided in the AutoCode distribution.

Shared Memory Architecture
In a multiprocessor system, subsystems are distributed across difference
processors. These subsystems must pass signals between each other and
can share common external inputs. Default AutoCode multiprocessor code
generation assumes a shared memory architecture and assumes all system
and subsystem external inputs and outputs are within a single data structure
named mbuf. Data included in this structure includes external system
input, external system output, data stores, and double-buffered subsystem
outputs. Subsystem inputs are handled indirectly because of the double
buffering.

Example 5-19 shows the sample and hold phase of subsystem 1.

Example 5-19 Sample and Hold Phase of Subsystem 1

subsys_1_in.throttle = ss5_outr->throttle;

subsys_1_in.Brake = mbuf->sys_extin.Brake;

subsys_1_in.PDown = mbuf->sys_extin.PDown;

Chapter 5 Generated Code Architecture

AutoCode Reference 5-44 ni.com

Distributed Memory Architecture
AutoCode also supports a multiprocessor architecture that uses distributed
memory instead of shared memory. AutoCode does this by generating
callouts (that is, macros) instead of the explicit code, and passes all of the
necessary data to the callout. Unfortunately, there are potentially a large
number of callouts to support various combinations of functionality and
data type of the arguments. Use the -smco option to generate those
callouts.

Example 5-20 is the same as Example 5-19 except that it has callouts.

Example 5-20 Example with Just the Callouts

subsys_1_in.throttle = ss5_outr->throttle;

GET_LOCF_FROM_MBUFF(&subsys_1_in.Brake, &mbuf->sys_extin.Brake);

GET_LOCF_FROM_MBUFF(&subsys_1_in.PDown, &mbuf->sys_extin.PDown);

Shared Memory Callouts
The following are the four sets of the callouts (that is, macros) that must be
implemented if you generate code with the -smco option. The variations of
the callouts are to support combinations of float, integer, and Boolean data
types.

Callout Naming Convention
The callouts follow a simple naming convention. The convention is a
concatenation of operation type, destination, destination data type, source,
and source data type. Operation type includes UPDATE (write) and GET
(read). Destination and source are MBUFF (shared memory) and LOC (local
data). Data types are F (float), I (integer), and B (Boolean).

1. Copy data into shared data:

UPDATE_MBUFF_WITH_LOCF(dest,src)

UPDATE_MBUFB_WITH_LOCB(dest,src)

UPDATE_MBUFI_WITH_LOCI(dest,src)

UPDATE_MBUFF_WITH_LOCI(dest,src)

2. Copy between two shared data elements:

UPDATE_MBUFF_WITH_MBUFF(dest,src)

UPDATE_MBUFB_WITH_MBUFB(dest,src)

UPDATE_MBUFI_WITH_MBUFI(dest,src)

UPDATE_MBUFF_WITH_MBUFI(dest,src)

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-45 AutoCode Reference

3. Copy a block of local data into shared data:

UPDATE_MBUF_WITH_LOCBLK(dest,src,size)

4. Copy shared data into local data:

GET_LOCF_FROM_MBUFF(dest,src)

GET_LOCB_FROM_MBUFB(dest,src)

GET_LOCI_FROM_MBUFI(dest,src)

GET_LOCF_FROM_MBUFI(dest,src)

Mapping Command Options
There is a set of command options that provide a way to direct AutoCode
to generate code for specific functions on a specific processor. This lets you
load-balance your system by being able to shift code from one processor to
another. The entities that can be mapped to a specific processor include
subsystems, background procedures, startup procedures, and interrupt
procedures. Refer to the AutoCode User Guide for information on how to
specify the maps.

Fixed-Point Support for Multiprocessor AutoCode
AutoCode’s capability to generate code for multiprocessor hardware has
been strengthened with fixed-point data type support. If a multiprocessor
target’s shared memory architecture prevents direct access to variables
(such as alignment problems or distributed memory), AutoCode must
generate callouts instead of assignment statements. The callouts are
generated when the -smco option is used and there are different callouts to
deal with different data types. In this section, these fixed point callouts are
described in detail. For more details regarding multiprocessor code, refer to
the appropriate chapter in the manual.

Definitions and Conventions
The following list presents the terms commonly used when referring to the
shared memory callouts.

• MBUF refers to shared memory.

• LOC stands for local memory.

• SBYTE stands for signed byte.

• UBYTE stands for unsigned byte.

• SSHORT stands for signed short.

• USHORT stands for unsigned short.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-46 ni.com

• SLONG stands for signed long.

• ULONG stands for unsigned long.

The naming convention of the callouts uses the terms listed above and
associates from right to left. The following is an example of a callout.

UPDATE_MBUFSBYTE_WITH_LOCSBYTE(x, y)

The value of the local variable x of type signed byte is assigned to a
shared memory variable y of type signed byte. All of these callouts
assume that the data type of x and y are identical except when noted.

Shared Memory Fixed-Point Callouts in AutoCode/C
AutoCode/C generates the callout when needed. You must provide the
implementation of the callouts. You can choose to use macros or procedure
calls and whether or not the implementation is generated from within the
template. You can update shared memory as follows.

From Local Memory
UPDATE_MBUFSBYTE_WITH_LOCSBYTE(x, y)

UPDATE_MBUFUBYTE_WITH_LOCUBYTE(x, y)

UPDATE_MBUFSSHORT_WITH_LOCSSHORT(x, y)

UPDATE_MBUFUSHORT_WITH_LOCUSHORT(x, y)

UPDATE_MBUFSLONG_WITH_LOCSLONG(x, y)

UPDATE_MBUFULONG_WITH_LOCULONG(x, y)

From Shared Memory
UPDATE_MBUFSBYTE_WITH_MBUFSBYTE(x, y)

UPDATE_MBUFUBYTE_WITH_MBUFUBYTE(x, y)

UPDATE_MBUFSSHORT_WITH_MBUFSSHORT(x, y)

UPDATE_MBUFUSHORT_WITH_MBUFUSHORT(x, y)

UPDATE_MBUFSLONG_WITH_MBUFSLONG(x, y)

UPDATE_MBUFULONG_WITH_MBUFULONG(x, y)

From Shared Memory (mixed data types)
UPDATE_MBUFSBYTE_WITH_MBUFF(x, y, convert_macro_name)
UPDATE_MBUFF_WITH_MBUFSBYTE(x, y, convert_macro_name)
UPDATE_MBUFUBYTE_WITH_MBUFF(x, y, convert_macro_name)
UPDATE_MBUFF_WITH_MBUFUBYTE(x, y, convert_macro_name)
UPDATE_MBUFSSHORT_WITH_MBUFF(x, y, convert_macro_name)
UPDATE_MBUFF_WITH_MBUFSSHORT(x, y, convert_macro_name)
UPDATE_MBUFUSHORT_WITH_MBUFF(x, y, convert_macro_name)

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-47 AutoCode Reference

UPDATE_MBUFF_WITH_MBUFUSHORT(x, y, convert_macro_name)
UPDATE_MBUFSLONG_WITH_MBUFF(x, y, convert_macro_name)
UPDATE_MBUFF_WITH_MBUFSLONG(x, y, convert_macro_name)
UPDATE_MBUFULONG_WITH_MBUFF(x, y, convert_macro_name)
UPDATE_MBUFF_WITH_MBUFULONG(x, y, convert_macro_name)

The third argument, convert_macro_name, is the name of the fixed-point
conversion macro that is used for conversion between fixed-point and
floating-point numbers.

Reading Shared Memory
These callouts assign the values of the shared variable y to the local
variable x.

GET_LOCSBYTE_FROM_MBUFSBYTE(x, y)

GET_LOCUBYTE_FROM_MBUFUBYTE(x, y)

GET_LOCSSHORT_FROM_MBUFSSHORT(x, y)

GET_LOCUSHORT_FROM_MBUFUSHORT(x, y)

GET_LOCSLONG_FROM_MBUFSLONG(x, y)

GET_LOCULONG_FROM_MBUFULONG(x, y)

Shared-Memory Fixed-Point Callouts for AutoCode/Ada
The shared memory callouts for fixed-point data types are not supported in
this release. However, shared memory fixed-point is supported for Ada
code generation as long as the -smco option is not used.

Shared Variable Block Support
AutoCode supports shared variable blocks, that is, the same variable block
used on more than one processor. AutoCode generates an indirect reference
to a shared variable block variable through a pointer. Refer to
Example 5-21. This pointer is referenced from an array of pointers.
AutoCode always uses the 0th element of the shared variable block pointer
array (isi_varblk). This is to provide indirection into the shared memory
region of the target hardware. The pointer is a pointer to a data structure
containing the declarations of the shared variable blocks. An instance of
that structure should be declared in the shared memory region of the target
hardware and the pointer in isi_varblk[0] set to that instance.

Caution It is your responsibility to create the pointers, data structures, and shared memory
region for the multiprocessor target hardware. Also, use the variable block callouts to
ensure coherency of the shared data.

Chapter 5 Generated Code Architecture

AutoCode Reference 5-48 ni.com

Example 5-21 shows template code to generate the required structure and
pointer. All of the necessary information about the shared variable blocks
is accessible from within the template using parameter information.

Example 5-21 Template Code to Generate Required Shared Variable Block Structures (C)

@IFF multiprocessor_b@@

@shared_count = 0@@

@

/**** declare shared variable block structure ****/

static struct _shared_varblk {

@LOOPP k=0, k lt nvars_i, k=k plus 1@@

@IFF vars_prsr_scope_li[k] eq 2 or vars_prsr_scope_li[k] eq 3@@

@shared_count = shared_count + 1@@

@

@/declare shared variable block

@

 @vars_typ_pfix_ls[k]@ @vars_ls[k]@

@

@/generate dimensions, if array

@offset = vars_sfix_dim_start_li[k]@@

@LOOPP m=0, m lt vars_typ_sfix_dim_li[k], m=m plus 1@@

[@vars_typ_sfix_li[offset]@]@

@offset = offset plus 1@@

@ENDLOOPP@@

;

@ENDIFF@@

@ENDLOOP@@

@/if no varblks shared, must create a dummy element

@IFF shared_count eq 0@@

 RT_INTEGER ignore;

@ENDIFF@@

};

/**** declare shared variables in shared memory ****/

#pragma SHARED_MEM_BEGIN

 struct _shared_varblk shared_var_blks;

#pragma SHARED_MEM_END

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-49 AutoCode Reference

/**** declare pointer to shared variables ****/

volatile struct _shared_varblk *isi_varblk[1] = {&shared_var_blks};

@ENDIFF@

Example 5-21 assumes the existence of a fictional shared memory target
such that the compiler supports #pragmas to declare the shared memory
region. Your compiler and architecture will most likely have a different
mechanism.

The following list shows the requirements for shared variable block
support. All of the steps can be accomplished within the template using
template parameters.

• Create a structure (record) containing the name and data type of the
shared variable blocks in the model. This structure should be visible to
the code on each processor, or must be declared static. The source
file(s) for each processor must have a declaration of the structure.

• Declare an instance of the structure containing the shared variable
blocks into shared memory. This will vary, depending on your
compiler’s and target’s shared memory architecture.

• Declare a static variable named isi_varblk that is an array (or a
pointer in C) and assign the 0th element to the location in shared
memory where the shared variable block structure is placed. Refer to
Example 5-22.

For Ada, the template code will be identical except that you must
transliterate the C syntax into Ada syntax and the shared memory allocation
will be different.

Example 5-22 Shared Variable Block Generated Code with Callouts (-vbco)

/* ------------------------------- Read from Variable */

Enter_Shared_Varblk_Section(4);

 proc2_4_1 = isi_varblk[0]->block5[0];

 proc2_4_2 = isi_varblk[0]->block5[1];

Leave_Shared_Varblk_Section(4);

/* ------------------------------- Write to Variable */

Enter_Shared_Varblk_Section(4);

 isi_varblk[0]->block5[0] = proc2_4_1;

 isi_varblk[0]->block5[1] = proc2_4_2;

Leave_Shared_Varblk_Section(4);

Chapter 5 Generated Code Architecture

AutoCode Reference 5-50 ni.com

Shared Memory Callout Option
AutoCode supports a shared memory callout for all access to elements in
shared memory. Callouts are generated when the -smco option is specified.
The previous discussion about shared variable blocks still applies.
However, the generated code is different, and you must supply the
definitions of the callouts.

Read Shared Variable Block Callouts
There are currently four callouts used when reading from a shared variable
block. The difference is to accommodate different data types. The
prototypes are:

RT_FLOAT Read_Shared_Varblk_Float(long offset);

RT_INTEGER Read_Shared_Varblk_32(long offset);

RT_INTEGER Read_Shared_Varblk_16(long offset);

RT_INTEGER Read_Shared_Varblk_8(long offset);

There is a callout for RT_FLOAT, 32-bit (RT_INTEGER, RT_ULONG, and
RT_SLONG), 16-bit (RT_USHORT and RT_SSHORT) and 8-bit (RT_UBYTE
and RT_SBYTE) data types.

Example 5-23 uses the Read_Shared_Varblk... syntax.

Write Shared Variable Block Callouts
There are currently four callouts used when writing to a shared variable
block. The difference is to accommodate different data types. The
prototypes are:

void Write_Shared_Varblk_Float(long offset, RT_FLOAT value);

void Write_Shared_Varblk_32(long offset, RT_INTEGER value);

void Write_Shared_Varblk_16(long offset, RT_INTEGER value);

void Write_Shared_Varblk_8(long offset, RT_INTEGER value);

There is a callout for RT_FLOAT, 32-bit (RT_INTEGER, RT_ULONG, and
RT_SLONG), 16-bit (RT_USHORT and RT_SSHORT) and 8-bit (RT_UBYTE
and RT_SBYTE) data types.

Example 5-23 uses the Write_Shared_Varblk_Float(long offset)
syntax.

Example 5-23 Shared Variable Block Generated Code With Callouts (Using the -vbco and -smco Options)

/* ------------------------------- Read from Variable */

Enter_Shared_Varblk_Section(4);

 proc2_4_1 = Read_Shared_Varblk_Float(&isi_varblk[0]->block5[0]);

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-51 AutoCode Reference

 proc2_4_2 = Read_Shared_Varblk_Float(&isi_varblk[0]->block5[1]);

Leave_Shared_Varblk_Section(4);

/* ------------------------------- Write to Variable */

Enter_Shared_Varblk_Section(4);

 Write_Shared_Varblk_Float(&isi_varblk[0]->block5[0], proc2_4_1);

 Write_Shared_Varblk_Float(&isi_varblk[0]->block5[1], proc2_4_2);

Leave_Shared_Varblk_Section(4);

Global Variable Block Callouts
Callouts are generated around each variable block access when the -vbco
option is specified. These callouts define a critical section region for the
variable block and let you implement some type of exclusion scheme to
protect the integrity of the variable block variable access, if necessary.
When callouts are used for single- or multiple-processor code generation,
the provided implementation of the callouts does absolutely nothing.

Callout Pairs
There are different variations of the callouts to suit different code
generation specifications. The callouts are grouped together into pairs.
A pair of callouts is used to surround the variable block access. One
function of the pair represents the entry into the critical region and the
other represents the leaving of the region. There are four different pairs for
different code generation configurations. The choice of which pair depends
on whether the variable block is shared among multiple processors and
whether the -epi option is used.

Non-Shared (Local) Global Variable Blocks
A variable block is defined as non-shared if only one processor accesses
that variable block. By definition, all variable block accesses for
single-processor code generation are non-shared. There are sets of callouts
for non-shared variable block accesses. Notice that the term local variable
block was previously used to describe a non-shared variable block.

Entering Non-Shared (Local) Critical Section
The prototype of the callout for entering a non-shared global variable block
critical section is:

void Enter_Local_Varblk_Section(RT_INTEGER index);

procedure Enter_Local_Varblk_Section(index :

RT_INTEGER);

Chapter 5 Generated Code Architecture

AutoCode Reference 5-52 ni.com

The formal argument represents the global reference number for which the
variable block is being accessed. The default implementation of those
simply calls the Disable() function.

Leaving Non-Shared (Local) Critical Section
The prototype of the callout for leaving a non-shared global variable block
critical section is:

void Leave_Local_Varblk_Section(RT_INTEGER index);

procedure Leave_Local_Varblk_Section(index :

RT_INTEGER);

The formal argument represents the global reference number for which the
variable block is being accessed. The default implementation of those
simply calls the Enable() function.

The following code uses the Enter_Local_Varblk... syntax to call
non-shared global variable block generated code with callouts, using the
-vbco option.

Enter_Local_Varblk_Section(4);

proc2_4_1 = block5[0];

proc2_4_2 = block5[1];

Leave_Local_Varblk_Section(4);

Entering with Extended Procedure Info Option Specified
The prototype of the callout for entering a non-shared global variable block
critical section with the extended procedure info option is:

void Enter_Local_Varblk_Section(RT_INTEGER index, RT_INTEGER caller_id);

procedure Enter_Local_Varblk_Section(index : RT_INTEGER;

caller_id : RT_INTEGER);

The formal argument, index, represents the global reference number for
which the variable block is being accessed. The second formal argument,
caller_id, represents a unique identifier for the caller. The default
implementation of those calls the Disable function.

Leaving with Extended Procedure Info Option Specified
The prototype of the callout for leaving a non-shared global variable block
critical section with the extended procedure info option is:

void Leave_Local_Varblk_Section(RT_INTEGER index, RT_INTEGER caller_id);

procedure Leave_Local_Varblk_Section(index : RT_INTEGER;

caller_id : RT_INTEGER);

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-53 AutoCode Reference

The formal argument represents the global reference number for which the
variable block is being accessed. The second formal argument,
caller_id, represents a unique identifier for the caller. The default
implementation of those simply calls the Enable() function.

The following code uses the Enter_Local_Varblk... syntax to call
non-shared global variable block generated code with callouts, using the
-vbco and -epi options.

Enter_Local_Varblk_Section(4, 1);

proc2_4_1 = block5[0];

proc2_4_2 = block5[1];

Leave_Local_Varblk_Section(4, 1);

Shared Global Variable Blocks
Variable blocks are defined as shared if more than one processor accesses
that variable block. There are sets of callouts for shared variable block
accesses. For a discussion of code generation for shared variable blocks,
refer to the Shared Variable Block Support section.

Entering Shared Critical Section
The prototype of the callout for entering a shared variable block critical
section is:

void Enter_Shared_Varblk_Section(RT_INTEGER processor, RT_INTEGER index);

procedure Enter_Shared_Varblk_Section(processor : RT_INTEGER;

index : RT_INTEGER);

The first formal argument represents which processor the access is taking
place on. Processor numbers are 1-based. The second formal argument
represents the global reference number for which the variable block is
being accessed.

Leaving Shared Critical Section
The prototype of the callout for leaving a local variable block critical
section is:

void Leave_Shared_Varblk_Section(RT_INTEGER processor, RT_INTEGER index);

procedure Leave_Shared_Varblk_Section(processor : RT_INTEGER;

index : RT_INTEGER);

Chapter 5 Generated Code Architecture

AutoCode Reference 5-54 ni.com

The first formal argument represents which processor the access is taking
place on. Processor numbers are 1-based. The second formal argument
represents the global reference number for which the variable block is
being accessed.

The following code uses the Enter_Shared_Varblk... syntax to call
shared variable block generated code with callouts, using the -vbco option.

Enter_Shared_Varblk_Section(1, 4);

proc2_4_1 = block5[0];

proc2_4_2 = block5[1];

Leave_Shared_Varblk_Section(1, 4);

Entering with Extended Procedure Info Option Specified
The prototype of the callout for entering a shared variable block critical
section with the extended procedure info option is:

void Enter_Shared_Varblk_Section(RT_INTEGER index, RT_INTEGER caller_id);

procedure Enter_Shared_Varblk_Section(index : RT_INTEGER;

caller_id : RT_INTEGER);

The formal argument, index, represents the global reference number for
which the variable block is being accessed. The second formal argument,
caller_id, represents a unique identifier for the caller.

Note A default implementation is not provided for these callouts.

Leaving with Extended Procedure Info Option Specified
The prototype of the callout for leaving a shared variable block critical
section with the extended procedure info option is:

void Leave_Shared_Varblk_Section(RT_INTEGER index, RT_INTEGER caller_id);

procedure Leave_Shared_Varblk_Section(index : RT_INTEGER;

caller_id : RT_INTEGER);

The first formal argument represents the global reference number for which
the variable block is being accessed. The second formal argument,
caller_id, represents a unique identifier for the caller.

Note A default implementation is not provided for these callouts.

Chapter 5 Generated Code Architecture

© National Instruments Corporation 5-55 AutoCode Reference

The following code uses the Enter_Shared_Varblk... syntax for
shared variable block generated code with callouts, using the -vbco and
-epi options.

Enter_Shared_Varblk_Section(4, 1);

proc2_4_1 = isi_varblk[0]->block5[0];

proc2_4_2 = isi_varblk[0]->block5[1];

Leave_Shared_Varblk_Section(4, 1);

Caution It is not possible to mix code with shared variable blocks generated with the
-epi option and code with shared variable blocks generation without -epi because the
prototypes of the shared variable block callouts are the same.

© National Instruments Corporation 6-1 AutoCode Reference

6
Vectorized Code Generation

This chapter discusses various ways to generate vectorized code.
This includes describing the options available, design guidelines,
and implementation details about the vectorized code.

Introduction
AutoCode has the capability to generate vectorized code. The default code
generation style, however, remains to be all scalars. Vectorized code has
two attributes:

• Signals are represented as arrays instead of scalars in the generated
code

• Algorithms use loops to roll the code into a compact algorithm

Some of the benefits of vectorized code generation include:

• Smaller source size

• Smaller object code size

• Efficient implementation of large systems

• Loops with general BlockScript blocks

• Mixed scalar and vectorized code within the same model

You do not have to change your pre-release 7.x SystemBuild models to get
the benefits of vectorization. AutoCode implements all of the standard
block algorithms in a vectorized way that can be realized in MATRIXx 7.x
and later. Of course, a model designed specifically to take advantage of
vectorized code will perform better than one designed for scalar code.

How Code Is Generated
This section introduces the look of vectorized code by comparing the
code to the equivalent scalar code. The gain block illustrates most of the
concepts of vectorized code generation. For this example, assume a
10 input/output gain block with various gain parameters connected directly
to the subsystem external input and output.

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-2 ni.com

Scalar Gain Block Example
Example 6-1 shows the scalar code generated for a gain block.

Example 6-1 Scalar Code Generated for Gain Block Example

void subsys_1(U, Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

{

 static RT_INTEGER iinfo[4];

 /******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

 /***** Output Update. *****/

 /* ---------------------------- Gain Block */

 /* {gain..2} */

 Y->gain_2_1 = 1.2*U->gain_1;

 Y->gain_2_2 = 2.3*U->gain_2;

 Y->gain_2_3 = 3.4*U->gain_3;

 Y->gain_2_4 = 4.5*U->gain_4;

 Y->gain_2_5 = 5.6*U->gain_5;

 Y->gain_2_6 = 6.7*U->gain_6;

 Y->gain_2_7 = 7.8*U->gain_7;

 Y->gain_2_8 = 8.9*U->gain_8;

 Y->gain_2_9 = 9.1*U->gain_9;

 Y->gain_2_10 = 10.11*U->gain_10;

The scalar code for the gain block should be familiar. Some characteristics
of the code for later comparison should be mentioned. First, this is the
canonical example of the concept of unrolling. The basic equation for a
gain block is:

Y(i) = GainParameter(i) * U(i)

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-3 AutoCode Reference

where

Y(i) is the ith output

U(i) is the ith input

GainParameter(i) is the ith gain value

i is the range <1..x>, where x is the number of outputs of the block

As you can see from the code generation, each of the ith elements of the
gain block is represented by a uniquely named variable. Therefore, the
basic equation is considered to be unrolled or code generated with scalars.

The second characteristic is the gain parameters. As you can see, those
values are hard-coded into the generated code instead of being represented
symbolically. With scalar code generation, constants are always
hard-coded.

Vectorized Gain Block Example
Before showing the code for the vectorized gain block, you need to know
what to look for and compare against the scalar code. First, look at the
implementation of the gain block in Example 6-2. Notice that the code is
rolled into a single for-loop. Also notice the use of arrays to access the data
and that gain parameter values are no longer hard-coded. The values appear
in the ubiquitous R_P array.

Example 6-2 Vectorized Code Generation for Gain Block Example

void subsys_1(U, Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

{

 static RT_INTEGER iinfo[4];

 /***** Parameters. *****/

 static RT_FLOAT R_P[10];

 RT_INTEGER cnt;

 static const RT_FLOAT _R_P[10] = {1.2, 2.3, 3.4, 4.5, 5.6, 6.7,

 7.8, 8.9, 9.1, 10.11};

 /***** Algorithmic Local Variables. *****/

 RT_INTEGER i;

 /******* Initialization. *******/

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-4 ni.com

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 for(cnt=0;cnt<10;cnt++) {

 R_P[cnt] = _R_P[cnt];

 }

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

 /***** Output Update. *****/

 /* ---------------------------- Gain Block */

 /* {gain..2} */

 for (i=1; i<=10; i++) {

 Y->gain_2_1[-1+i] = R_P[-1+i]*U->gain_1[-1+i];

 }

In summary, Example 6-2 shows some of the requirements for vectorized
code generation:

• The block’s input and output signals must be arrays.

• Constant parameter data must be represented in an array.

• An array must represent signals of the same data type.

As far as the constant parameter data, AutoCode automatically bundles the
data into the R_P (or other parameter array) as needed. However, the inputs
and outputs of the block are controlled by the signal connectivity of the
model. AutoCode will never reconnect your model to provide
vectorization.

Array Subscripts
An interesting characteristic of the vectorized code generation is the
way array subscripts are generated. Looking closely, you will see in
Example 6-2 that all subscripts are generated as -1+i. C arrays are
0-based, meaning that the first array element is the 0th element.
BlockScript, our internal language to describe block algorithms, defines
arrays as being 1-based.1 Therefore, when a block is translated into code,
a translation from 1-based access into 0-based access is performed. In

1 BlockScript was previously used to generate FORTRAN code in which arrays are 1-based.

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-5 AutoCode Reference

addition to issues with the standard block library, all general BlockScript
Blocks within the diagram are implemented as 1-based arrays. If the
subscript can be evaluated at generation-time, the 0-based subscript will be
used.

Note The extra computation of the subscripts represents a compatibility issue.
Elimination of the 1-based array representation in BlockScript will be addressed in a future
release.

Signal Connectivity
One of the greatest modeling capabilities provided in the SystemBuild
model is the ability to connect any output signal to many input pins. That
requirement, coupled with increased traceability, necessitated the use of
scalars in the generated code. Vectorized code generation requires a more
disciplined design if vectorization is to improve the generated code.
Although it is not necessary to redesign your model, you should be aware
that the flexibility of the SystemBuild Editor lets you design models that
vectorize poorly, which means they require the code to be unrolled. In other
words, generating arrays is not enough for vectorized code; the
connectivity of the model is vital in enabling loops in the generated code.

Block Outputs
The outputs of a block always can be generated as one or more arrays. The
outputs of one block cannot be part of the same array used for outputs of
another block. The creation of the arrays are controlled by the vectorization
mode and labels of the individual output pins.

Block Inputs
The inputs of a block are either SuperBlock (subsystem) external inputs
and/or outputs from other basic blocks. Those inputs might or might not be
an array and/or might not be connected in a way that allows for the code to
be rolled into a loop. The diagram in Figure 6-1 represents poor input
connectivity that prevents a rolled loop. Refer to Example 6-3.

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-6 ni.com

Figure 6-1. Poorly Connected Gain Block

Example 6-3 Generated Code for Poorly Connected Gain Block (for Figure 6-1)

void subsys_1(U, Y)

 struct _Subsys_1_in *U;

 struct _Subsys_1_out *Y;

{

 static RT_INTEGER iinfo[4];

 /***** Parameters. *****/

 static RT_FLOAT R_P[5];

 RT_INTEGER cnt;

 static const RT_FLOAT _R_P[5] = {1.2, 2.3, 3.4, 4.5, 5.6};

 /***** Algorithmic Local Variables. *****/

 RT_INTEGER i;

 /******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 for(cnt=0;cnt<5;cnt++) {

 R_P[cnt] = _R_P[cnt];

 }

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

 /***** Output Update. *****/

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-7 AutoCode Reference

 /* ---------------------------- Gain Block */

 /* {gain..2} */

 Y->gain_2_1[0] = 1.2*U->gain_1[0];

 Y->gain_2_1[1] = 2.3*U->gain_1[2];

 Y->gain_2_1[2] = 3.4*U->gain_1[3];

 Y->gain_2_1[3] = 4.5*U->gain_1[5];

 Y->gain_2_1[4] = 5.6*U->gain_1[6];

This example shows that the penalty for poor connectivity can be great.
In this case, the vectorized code is not an improvement over scalar code.

Vectorization Modes
AutoCode supports two vectorization modes in addition to the default
scalar code generation. All three modes are controlled by one
command-line option, -Ov n, where n is the mode. The vectorization
modes allow the same model to be code generated in several ways to suite
your particular goals. The following sections briefly describe each mode.

Maximal Vectorization
Maximal vectorization (mode -Ov 2) is one of two vectorization modes
supported by AutoCode. Maximal vectorization is defined by placing all of
the outputs of a block into one or more arrays. For most blocks, only one
array is needed because the block can only have one output data type. For
blocks with more than one output data type, more than one array is used.
External inputs also are formed into arrays and like the basic block, if
mixed data types are used, multiple arrays are generated.

The names of the arrays are taken from the label/name of the first signal
bundled into the array. As a result, maximal vectorization might not
produce generated code that is very traceable back to the diagram. This
vectorization mode is to provide a quick way to get vectorized code without
having to examine your model’s design and tune it for efficient code.

Mixed Vectorization
This vectorization mode (mode -Ov 1) allows for both scalar and vector
code generation within the same system. This mode also is called
vector-by-label because the labels/names of the signals determine if a
vector is generated.

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-8 ni.com

Vector Labels and Names
The SuperBlock Editor lets you give a name to a range of signals using a
special notation. The Editor then repeatedly applies that name to the range.
AutoCode interprets this type of labeling as a definition of which pins are
to be an array. For more information about vector labeling, refer to the
SystemBuild User Guide.

The editor lets you use a vector label more liberally than what makes sense
for code generation. The following restrictions apply to a vector label when
being translated into code. If the labeling of the diagram does not conform,
AutoCode creates the arrays as best it can by mangling the name where it
sees fit.

• A vector must start at index 1.

• A vector cannot span different data types.

• A vector must be a range of contiguous pins.

• A vector can only be defined from one block, either a basic block’s
outputs, top-level SuperBlock inputs, or subsystem/procedure
boundary.

• A signal with an empty label/name is generated as a scalar.

Example
Figure 6-2 shows a good example of a vectorized algorithm, although it
does not do anything significant. Both the maximal and mixed-mode code
generation also is provided in Example 6-4 and Example 6-5, respectively.
Notice that the diagram is shown with all labels shown for each pin—even
those pins with a vector label—so you can trace the signals within the code.

In the model, notice that the outputs of the gain block are using scalar
labels. Therefore, when generated for maximal Vectorization, the array will
be named Throttle. When generated in mixed mode, you will see all five
distinct outputs of that block. Notice how that choice prevents the gain
block and time delay block from vectorizing. Notice that in either mode,
block states are always a vector.

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-9 AutoCode Reference

Figure 6-2. Example Model Diagram

Example 6-4 Maximal Vectorized Code Generation (for Figure 6-2)

/******* System Ext I/O type declarations. *******/

struct _Subsys_1_out {

 RT_FLOAT delayed_pulse[5];

};

struct _Sys_ExtIn {

 RT_FLOAT sensor_5[5];

};

/***** States type declaration. *****/

struct _Subsys_1_states {

 RT_FLOAT sensor_delay[5];

};

void subsys_1(U, Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

{

 /***** States Array. *****/

 static struct _Subsys_1_states ss_1_states[2];

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-10 ni.com

 static struct _Subsys_1_states *X;

 static struct _Subsys_1_states *XD;

 static struct _Subsys_1_states *XTMP;

 static RT_INTEGER iinfo[4];

 static RT_INTEGER INIT;

 /***** Parameters. *****/

 static RT_FLOAT R_P[11];

 RT_INTEGER cnt;

 static const RT_FLOAT _R_P[11] = {0.1, 0.0, 0.0, 0.0, 0.0,

 0.0, -8.7, -7.6, -6.5,

 -5.4, -4.3};

 /***** Local Block Outputs. *****/

 RT_FLOAT Throttle[5];

 /***** Algorithmic Local Variables. *****/

 RT_INTEGER i;

 RT_INTEGER j;

 RT_INTEGER k;

 /******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 INIT = 1;

 X = &ss_1_states[0];

 XD = &ss_1_states[1];

 {

 RT_INTEGER ii;

 for(ii=0;ii<5;ii++) {

 X->sensor_delay[ii] = 0.0;

 }

 }

 {

 RT_INTEGER ii;

 for(ii=0;ii<5;ii++) {

 XD->sensor_delay[ii] = 0.0;

 }

 }

 for(cnt=0;cnt<11;cnt++) {

 R_P[cnt] = _R_P[cnt];

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-11 AutoCode Reference

 }

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

 /***** Output Update. *****/

 /* ---------------------------- Time Delay */

 /* {VecEx..12} */

 if (INIT) {

 k = 0;

 for (i=1; i<=5; i++) {

 X->sensor_delay[k] = R_P[i];

 k = k + 1;

 }

 }

 k = 1;

 for (i=1; i<=5; i++) {

 Y->delayed_pulse[-1+i] = X->sensor_delay[-1+k];

 k = k + 1;

 }

 /* ---------------------------- Gain Block */

 /* {VecEx..2} */

 for (i=1; i<=5; i++) {

 Throttle[-1+i] = R_P[5+i]*U->sensor_5[-1+i];

 }

 /***** State Update. *****/

 /* ---------------------------- Time Delay */

 /* {VecEx..12} */

 k = 0;

 for (i=1; i<=5; i++) {

 XD->sensor_delay[k] = Throttle[-1+i];

 k = k + 1;

 }

 /***** Swap state pointers. *****/

 XTMP = X;

 X = XD;

 XD = XTMP;

 INIT = 0;

}

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-12 ni.com

Example 6-5 Mixed Vectorized Code Generation (for Figure 6-2)

/******* System Ext I/O type declarations. *******/

struct _Subsys_1_out {

 RT_FLOAT delayed_pulse[5];

};

struct _Sys_ExtIn {

 RT_FLOAT sensor_5;

 RT_FLOAT sensor_11;

 RT_FLOAT sensor_12;

 RT_FLOAT sensor_4;

 RT_FLOAT sensor_1;

};

/***** States type declaration. *****/

struct _Subsys_1_states {

 RT_FLOAT sensor_delay[5];

};

void subsys_1(U, Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

{

 /***** States Array. *****/

 static struct _Subsys_1_states ss_1_states[2];

 /***** Current and Next States Pointers. *****/

 static struct _Subsys_1_states *X;

 static struct _Subsys_1_states *XD;

 static struct _Subsys_1_states *XTMP;

 static RT_INTEGER iinfo[4];

 static RT_INTEGER INIT;

 /***** Parameters. *****/

 static RT_FLOAT R_P[11];

 RT_INTEGER cnt;

 static const RT_FLOAT _R_P[11] = {0.1, 0.0, 0.0, 0.0, 0.0,

 0.0, -8.7, -7.6, -6.5,

 -5.4, -4.3};

 /***** Local Block Outputs. *****/

 RT_FLOAT Throttle;

 RT_FLOAT Pedal;

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-13 AutoCode Reference

 RT_FLOAT Brake;

 RT_FLOAT Gear;

 RT_FLOAT Clutch;

 /***** Algorithmic Local Variables. *****/

 RT_INTEGER i;

 RT_INTEGER j;

 RT_INTEGER k;

 /******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 INIT = 1;

 X = &ss_1_states[0];

 XD = &ss_1_states[1];

 {

 RT_INTEGER ii;

 for(ii=0;ii<5;ii++) {

 X->sensor_delay[ii] = 0.0;

 }

 }

 {

 RT_INTEGER ii;

 for(ii=0;ii<5;ii++) {

 XD->sensor_delay[ii] = 0.0;

 }

 }

 for(cnt=0;cnt<11;cnt++) {

 R_P[cnt] = _R_P[cnt];

 }

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

 /***** Output Update. *****/

 /* ---------------------------- Time Delay */

 /* {VecEx..12} */

 if (INIT) {

 k = 0;

 for (i=1; i<=5; i++) {

 X->sensor_delay[k] = R_P[i];

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-14 ni.com

 k = k + 1;

 }

 }

 k = 1;

 for (i=1; i<=5; i++) {

 Y->delayed_pulse[-1+i] = X->sensor_delay[-1+k];

 k = k + 1;

 }

 /* ---------------------------- Gain Block */

 /* {VecEx..2} */

 Throttle = -8.7*U->sensor_5;

 Pedal = -7.6*U->sensor_11;

 Brake = -6.5*U->sensor_12;

 Gear = -5.4*U->sensor_4;

 Clutch = -4.3*U->sensor_1;

 /***** State Update. *****/

 /* ---------------------------- Time Delay */

 /* {VecEx..12} */

 k = 0;

 XD->sensor_delay[k] = Throttle;

 k = k + 1;

 XD->sensor_delay[k] = Pedal;

 k = k + 1;

 XD->sensor_delay[k] = Brake;

 k = k + 1;

 XD->sensor_delay[k] = Gear;

 k = k + 1;

 XD->sensor_delay[k] = Clutch;

 k = k + 1;

 /***** Swap state pointers. *****/

 XTMP = X;

 X = XD;

 XD = XTMP;

 INIT = 0;

Vectorization Features
This section describes features of the vectorized code. You do not have to
enable these features explicitly. These features are the natural result of
introducing arrays into the generated code. In other words, to support
vectorization for any model, these features must be present.

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-15 AutoCode Reference

Note The examples within this section assume maximal vectorization unless otherwise
noted.

Multiple Arrays within a Block
All blocks support multiple vectors (arrays) as both outputs and inputs.
However, depending on exactly how the signals are connected and the
algorithm, loops might not be generated as expected. Generally speaking,
as long as multiple arrays are connected contiguously to the inputs of the
block, loops are possible. For example, examine the model in Figure 6-3
and the generated code in Example 6-6.

Figure 6-3. Multiple Array Mode

Example 6-6 Multiple Array Code (for Figure 6-3)

void subsys_1(U, Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

{

 static RT_INTEGER iinfo[4];

 /***** Parameters. *****/

 static RT_FLOAT R_P[20];

 RT_INTEGER cnt;

 static const RT_FLOAT _R_P[20] = {1.2, 2.3, 3.4, 4.5, 5.6,

 1.2, 2.3, 3.4, 4.5, 5.6,

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-16 ni.com

 1.2, 2.3, 3.4, 4.5, 5.6,

 1.0, 1.0, 1.0, 1.0, 1.0};

 /***** Local Block Outputs. *****/

 RT_FLOAT top[5];

 RT_FLOAT bottom[5];

 /***** Algorithmic Local Variables. *****/

 RT_INTEGER i;

 /******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 for(cnt=0;cnt<20;cnt++) {

 R_P[cnt] = _R_P[cnt];

 }

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

 /***** Output Update. *****/

 /* ---------------------------- Gain Block */

 /* {gain..2} */

 for (i=1; i<=5; i++) {

 top[-1+i] = R_P[-1+i]*U->gain_1[-1+i];

 }

 /* ---------------------------- Gain Block */

 /* {gain..1} */

 for (i=1; i<=5; i++) {

 bottom[-1+i] = R_P[4+i]*U->gain_1[4+i];

 }

 /* ---------------------------- Gain Block */

 /* {gain..99} */

 for (i=1; i<=5; i++) {

 Y->final[-1+i] = R_P[9+i]*top[-1+i];

 }

 for (i=6; i<=10; i++) {

 Y->final[-1+i] = R_P[9+i]*bottom[-6+i];

 }}

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-17 AutoCode Reference

The interesting part is that of the last gain block (gain..99). Notice that
although two distinct arrays are used as input, because the input arrays are
connected contiguously, the code is rolled into two separate loops. The
generalized capability can be thought of as a replication of the block
algorithm to produce the best vectorization based on the inputs, outputs,
and the block algorithm.

Note There can be more than one array for the outputs of a block just as there can be
multiple arrays for the inputs. AutoCode replicates the algorithm to support multiple output
arrays just as Example 6-6 showed with multiple inputs.

Split-Merge Inefficiency
The term split-merge is a description of a problem that occurs when
generating vectorized code for a diagram and pieces of one or more arrays
are used as input. This is called a split [input] vector problem. A split vector
can prevent blocks from rolling into a single loop. A solution to this
problem is the merging of all of the inputs into arrays that can be easily
rolled.

Split Vector
The SystemBuild Editor lets you connect individual pins of the blocks very
easily. Thus, when generating vectorized code, instead of connecting up the
whole array, pieces or slices of the array are being used. This does not pose
a problem for the block generating the data, but for the blocks consuming
the data—that is, blocks using part of the array as input. The problem is that
the generated code might not be rolled into a loop. Hence, one would say
that you are using a split vector.

Consider the diagram in Figure 6-4 and the generated code in Example 6-7.

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-18 ni.com

Figure 6-4. Example of a Split Vector

Example 6-7 Generated Code for Split Vector (for Figure 6-4)

 /***** Output Update. *****/

 /* ---------------------------- Gain Block */

 /* {gain.top.2} */

 for (i=1; i<=5; i++) {

 top[-1+i] = R_P[-1+i]*U->gain_1[-1+i];

 }

 /* ---------------------------- Gain Block */

 /* {gain.bottom.1} */

 for (i=1; i<=5; i++) {

 bottom[-1+i] = R_P[4+i]*U->gain_1[4+i];

 }

 /* ---------------------------- Gain Block */

 /* {gain..99} */

 for (i=1; i<=2; i++) {

 Y->result[-1+i] = R_P[9+i]*top[-4+4*i];

 }

 Y->result[2] = 3.4*bottom[2];

 Y->result[3] = 4.5*top[1];

 Y->result[4] = 5.6*bottom[0];

 Y->result[5] = 6.7*top[1];}

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-19 AutoCode Reference

The two producer gain blocks (top, bottom) vectorize as expected. The
(gain..99) does not vectorize well. Notice that AutoCode was only able to
vectorize two inputs while the remaining four were unrolled.

AutoCode does not attempt to reconnect your diagram to generate better
vectorized code. Two design-level solutions can be applied to eliminate the
split vector problem:

• Change the design so that the inputs naturally form the array, that is,
merging multiple blocks into one block.

• Change to introduce blocks that merge data.

Merge
Merge is effectively a copy of sparsely connected data into a single array.
There is no special block to perform this because the gain block with unity
gain parameters performs this task perfectly. Consider the model shown in
Figure 6-5 that is similar to Example 6-7, and the generated code in
Example 6-8.

Figure 6-5. Complete Split-Merge Diagram

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-20 ni.com

Example 6-8 Generated Code (for Figure 6-5)

 /***** Output Update. *****/

 /* ---------------------------- Gain Block */

 /* {gain.top.2} */

 for (i=1; i<=5; i++) {

 top[-1+i] = R_P[-1+i]*U->gain_1[-1+i];

 }

 /* ---------------------------- Gain Block */

 /* {gain.bottom.1} */

 for (i=1; i<=5; i++) {

 bottom[-1+i] = R_P[4+i]*U->gain_1[4+i];

 }

 /* ---------------------------- Gain Block */

 /* {gain.merge.12} */

 merged_data[0] = top[2];

 merged_data[1] = bottom[3];

 merged_data[2] = top[0];

 merged_data[3] = bottom[2];

 merged_data[4] = top[1];

 merged_data[5] = bottom[0];

 /* ---------------------------- Nth Order Integrator */

 /* {gain..3} */

 if (INIT && XREMAP) {

 for (i=1; i<=6; i++) {

 X->gain_3_S1[0] = X->gain_3_S1[0] - TSAMP*X->gain_3_S1[1];

 X->gain_3_S1[1] = X->gain_3_S1[1] - TSAMP*merged_data[1+i];

 }

 }

 for (i=1; i<=6; i++) {

 Y->gain_3_1[-1+i] = X->gain_3_S1[1] + TSAMP*merged_data[-1+i];

 Y->gain_3_1[-1+i] = X->gain_3_S1[0] + TSAMP*Y->gain_3_1[-1+i];

 Y->gain_3_1[-1+i] = R_P[15+i]*Y->gain_3_1[-1+i];

 }

 /***** State Update. *****/

 /* ---------------------------- Nth Order Integrator */

 /* {gain..3} */

 for (i=1; i<=6; i++) {

 XD->gain_3_S1[1] = X->gain_3_S1[1] + TSAMP*merged_data[-1+i];

 XD->gain_3_S1[0] = X->gain_3_S1[0] + TSAMP*(XD->gain_3_S1[1]);}

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-21 AutoCode Reference

You should notice two things in the code shown in Example 6-8. First,
the gain block added to merge the data is generated as copies from the
respective inputs into the single array. Second, the integrator block is
tightly rolled. If the merge was not present, the Integrator would have been
unrolled, causing a 6-fold increase in the amount of code for that block.

The only reason to introduce a merge block (unit gain block) is when the
cost of unrolling the algorithm of your block—in this case the integrator
block—is more expensive then the merge block. It can be seen from the
code that the cost of a merge block is a copy in a local array. Because the
integrator algorithm is complicated, it is necessary to have the merge so that
the integrator is rolled.

AutoCode will not automatically introduce the merge (copy) just to
improve vectorization. The reason is that traceability from the code to
model is reduced anytime extra code other than the block algorithm is
generated. Also, AutoCode is not able to evaluate the design decision to
make one block rolled at the expense of another. Therefore, for optimal
vectorization, you might need to change your model.

External Outputs
Another variation of the split-merge problem appears with external outputs.
External outputs are represented by the Y-structure. It contains only those
signals marked as external outputs. For scalar code generation, AutoCode
directly uses the symbol in the Y-structure instead of using local storage.
However, when the output of a block is a vector and only a subset of the
outputs are connected to external outputs, a conflict of requirements
appears between storing the block output into an array and optimizing
access to external output.

Copy-Back
When a split-merge occurs with external outputs, AutoCode must act to
preserve the semantics of the model. AutoCode has been designed to
preserve the array, and therefore the block vectorization and copy-back
those external outputs from the array into the Y-structure. In the example
shown in Figure 6-6, a simple gain block has only two of its five outputs
connected to the external output. AutoCode preserves the array for the gain
block, but copies the pieces of the array that are external output into the
Y-structure.

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-22 ni.com

Figure 6-6. Copy-Back Example

Example 6-9 Generated Code (for Figure 6-6)

void subsys_1(U, Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

{

 /**** some code deleted ****/

 /***** Output Update. *****/

 /* ---------------------------- Gain Block */

 /* {gain.top.2} */

 for (i=1; i<=5; i++) {

 top[-1+i] = R_P[-1+i]*U->gain_1[-1+i];

 }

 /* Copy back(s) and/or duplicate(s) */

 {

 RT_INTEGER k=0;

 for(k=0;k<2;k++) {

 Y->top[k] = top[(k*3)+1];

 }

 }

Copy-backs are coupled with handling duplicate external outputs, meaning
that a block output is connected to more than one external output pin. The
example in Figure 6-6 just contains a copy-back. The copy-back/duplicate
copies, if needed, will appear at the very end of the subsystem.

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-23 AutoCode Reference

Eliminating Copy-Back
There are many design ways to eliminate or hide the extra copies of the
copy-back. All of them can be categorized into two groups:

• Use Mixed Vectorization mode and force scalars to be used for the
block is sparse external outputs. This eliminates rolling of the block
algorithm while eliminating the copy.

• Take all of the outputs of the block as external outputs. This adds more
elements to the Y-structure, but preserves rolling, and there would be
no copy-backs.

Other Copy-Back Scenarios
Copy-backs are most common at the top-level SuperBlock of a single-rate
system, and with Standard Procedures external outputs. In a single-rate
subsystem or Standard Procedure, it is important to notice that just having
all of the block outputs connected to external output will not eliminate the
copy-back unless the outputs are connected to contiguous pins of the
external output. Multi-rate systems are more forgiving, because AutoCode
will rearrange the outputs within the Y-structure, and thus having all of the
block outputs connected to external output is sufficient.

Vectorized Standard Procedure Interface
Another feature of the vectorized generated code is the ability to provide an
efficient mechanism to pass data into and out of standard procedures. When
generating vectorized code coupled with the no-uy procedure interface,
AutoCode creates arrays to be passed to the procedures. Passing an array
means passing by pointer, and that translates into a significant decrease in
the procedure call overhead. Figure 6-7 shows an example of this feature,
and Example 6-10 shows the code generated.

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-24 ni.com

Figure 6-7. Vectorized Procedure Interface

Example 6-10 Generated Code (for Figure 6-7)

/******* Procedure: vecproc *******/

void vecproc(vecproc_1, vecproc_2_1, I)

 RT_FLOAT vecproc_1[5];

 RT_FLOAT vecproc_2_1[5];

 struct _vecproc_info *I;

{

 /**** some code deleted ****/

 /***** Output Update. *****/

 /* ---------------------------- Gain Block */

 /* {vecproc..2} */

 for (i=1; i<=5; i++) {

 vecproc_2_1[-1+i] = R_P[-1+i]*vecproc_1[-1+i];

 }

}

void subsys_1(U, Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

{

 /**** some code deleted ****/

 /***** Output Update. *****/

 /* ---------------------------- Gain Block */

 /* {gain.top.2} */

 for (i=1; i<=5; i++) {

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-25 AutoCode Reference

 top[-1+i] = R_P[-1+i]*U->gain_1[-1+i];

 }

 /* ---------------------------- Procedure Super Block */

 /* {vecproc.3} */

 vecproc(&top[0], &Y->vecproc_3_1[0], &vecproc_3_i);

 iinfo[0] = vecproc_3_i.iinfo[0];

 if(iinfo[0] != 0) {

 vecproc_3_i.iinfo[0] = 0; goto EXEC_ERROR;

 }

A vectorized procedure interface suffers from a form of the copy-back
problem. When using the vectorized interface, each time the procedure is
called, the inputs and outputs must be an array. Therefore, if an array is not
connected as the input or output, AutoCode must generate code to copy
data into a temporary array and then pass that array. In other words, if the
inputs and/or outputs are not connected to naturally conform to a vector
interface, the copies required might add significant overhead to the
procedure call, eliminating the benefits of the vectorized interface.

Ada Array Aggregates and Slices
All of the examples presented include generated C code. AutoCode will
generate the equivalent Ada code, except that use of array aggregation and
slices are used when possible. Example 6-11 is the equivalent Ada code for
a diagram previously shown in Figure 6-2.

Note Only the relevant subsystem code is listed.

Example 6-11 Ada Generated Code (for Figure 6-2)

 procedure subsys_1 is

 ------ Local Block Outputs. ------

 Throttle : RT_FLOAT_AY(0..4);

 ------ Algorithmic Local Variables. ------

 i_1 : RT_INTEGER;

 j : RT_INTEGER;

 k_1 : RT_INTEGER;

 begin

 -------- Initialization. --------

 if SUBSYS_PREINIT(1) then

 iinfo(0..3) := (0,1,1,1);

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-26 ni.com

 INIT := TRUE;

 X := ptr_of(ss_1_states(0)’address);

 XD := ptr_of(ss_1_states(1)’address);

 X.sensor_delay := (others => 0.0);

 XD.sensor_delay := (others => 0.0);

 for cnt in RT_INTEGER range 0..10 loop

 R_P(cnt) := RP(cnt);

 end loop;

 SUBSYS_PREINIT(1) := FALSE;

 return;

 end if;

 ------ Output Update. ------

 -- ---------------------------- Time Delay --

 -- {VecEx..12} --

 if INIT then

 k_1 := 0;

 for i_1 in RT_INTEGER range 1..5 loop

 X.sensor_delay(k_1) := R_P(i_1);

 k_1 := k_1 + 1;

 end loop;

 end if;

 k_1 := 1;

 for i_1 in RT_INTEGER range 1..5 loop

 Y.delayed_pulse(-1+i_1) := X.sensor_delay(-1+k_1);

 k_1 := k_1 + 1;

 end loop;

 -- ---------------------------- Gain Block --

 -- {VecEx..2} --

 for i_1 in RT_INTEGER range 1..5 loop

 Throttle(-1+i_1) := R_P(5+i_1)*U.sensor_5(-1+i_1);

 end loop;

 ------ State Update. ------

 -- ---------------------------- Time Delay --

 -- {VecEx..12} --

 k_1 := 0;

 for i_1 in RT_INTEGER range 1..5 loop

 XD.sensor_delay(k_1) := Throttle(-1+i_1);

 k_1 := k_1 + 1;

 end loop;

Chapter 6 Vectorized Code Generation

© National Instruments Corporation 6-27 AutoCode Reference

------ Swap state pointers. ------

 XTMP := X;

 X := XD;

 XD := XTMP;

 INIT := FALSE;

end;

Vectorization of the BlockScript Block
The general BlockScript block is commonly used to implement very
complicated or custom algorithms within a single block. A major limitation
was the so-called soft-index limitation that occurred when generating code.
The soft-index limitation existed because BlockScript represented inputs
and outputs as vectors while AutoCode generated scalars. Therefore, you
could not use a run-time computed subscript (that is, soft) index for inputs
and outputs.

With vectorization, the soft-subscript limitation is gone, as the inputs and
outputs of the block are arrays. That means that the connectivity of the
inputs matches the input groups specified in the BlockScript code.

Note Even with arrays, it is still possible to have the soft-subscript limitation for the
inputs. The last determining factor is how the inputs to the block are connected. If the
inputs to the BlockScript block are scalars rather than an array, the soft-subscript limitation
will apply.

The following is a list of limitations and features of the general BlockScript
block as applied to vectorized code generation.

• It is an error to use both soft-subscript and scalar code generation.

• Only 8-nested loops are supported.

• Bounds checks are not performed for a soft-subscript array access.

• While loops do not support a soft-subscript for inputs or outputs.

• A soft-subscript expression of an input or output array is not supported
outside of a For loop.

For more information about the BlockScript block, refer to the BlockScript
Block section of Chapter 5, Generated Code Architecture.

Chapter 6 Vectorized Code Generation

AutoCode Reference 6-28 ni.com

Matrix Outputs
When you provide matricized output labeling for a block, AutoCode
generates the resulting “matrix” as a single-dimensional array, even in Ada.
This means that the output of a matrix-labeled block and the output of a
vector-labeled block are identical, provided the number of elements in the
matrix matches the number in the vector. This paradigm was selected
because it insulates the “user” of a signal from the nature of the signal
source. Imagine trying to generate code for a block and having to first
check whether one or more input arrays are single versus
double-dimensional arrays.

One drawback is that some minor arithmetic must often be done in the
generated code to calculate the proper index expression into the “matrix.”
That is, row and column positions must be flattened to a single-dimensional
index number. The performance impact should be minimal and this
approach has the benefit that all optimizations originally implemented for
vectors now transfer immediately to “matrices,” such as partial reuse of
vectorized signals, with the -Oreuse option.

There is no rule that limits the use of matrix labeling to the newly
introduced matrix blocks. You can use matrix labeling on any block
outputs. However, since the matrix labels do not produce two-dimensional
arrays in the generated code, and block functionality is not affected by the
type of label present, it becomes clear that the main benefit of matrix
labeling is in the SystemBuild Editor and Connection Editor. For code
generation purposes, you will see no real performance gain in matrix
labeling over vector labeling. For information on matrix optimization,
refer to the Optimizing with Matrix Blocks section of Chapter 7, Code
Optimization.

© National Instruments Corporation 7-1 AutoCode Reference

7
Code Optimization

This chapter explains the details of generating production quality code for
micro controller-based applications. Generally, micro controller-based
applications have stringent requirements for code size and execution speed.
AutoCode supports various optimizations that could be used effectively
to generate highly optimal code both in terms of speed and code size.
Chapter 6, Vectorized Code Generation, explains the first step in this
direction, namely generating vectorized code that could significantly
reduce the code size of an application. This chapter explores other
optimizations supported by AutoCode.

Read from Variable Blocks
Variable blocks, both global and local, could be extensively used in any
application in order to store values from computations. AutoCode
sequences variable blocks and uses them in a deterministic fashion. When
a Read from Variable block is used, it is first copied into a temporary local
variable, and this variable is used in all further computations. This is not
strictly required for local variable blocks; and for global variable blocks
that are not shared across subsystems. Hence, instead of using the
temporary variable, the variable block could be used directly in all the
computations. Elimination of the temporary variable would result in
reduced code size, reduced stack size, and improved execution speed.

The code fragment in Example 7-1 shows the code generated by AutoCode
without this optimization; Example 7-2 shows code generated with variable
block optimization.

Example 7-1 Code Generated without Variable Block Optimization

/* Model variable definitions */

RT_FLOAT var;

RT_FLOAT var1;

void subsys_1(U,Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

{

Chapter 7 Code Optimization

AutoCode Reference 7-2 ni.com

 static RT_INTEGER iinfo[4];

 /***** Local Block Outputs. *****/

 RT_FLOAT new_11_1;

 RT_FLOAT new_1_1;

 RT_FLOAT new_12_1;

/******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0; iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

/***** Output Update. *****/

/* ---------------------------- Read from Variable */

/* {new..11} */

new_11_1 = var;

/* ---------------------------- Read from Variable */

/* {new..1} */

new_1_1 = var1;

/* ---------------------------- Sum of Vectors */

/* {new..12} */

new_12_1 = U->new_1 + new_1_1;

/* ---------------------------- Write to Variable */

/* {new..3} */

var = new_12_1;

/* ---------------------------- Sum of Vectors */

/* {new..5} */

Y->new_5_1 = U->new_1 - new_11_1;

if(iinfo[1]) {

 SUBSYS_INIT[1] = FALSE;

 iinfo[1] = 0;

}

return;

EXEC_ERROR: ERROR_FLAG[1] = iinfo[0];

iinfo[0]=0;}

Chapter 7 Code Optimization

© National Instruments Corporation 7-3 AutoCode Reference

Example 7-2 Code Generated with Variable Block Optimization Turned On

/* Model variable definitions */

RT_FLOAT var;

RT_FLOAT var1;

void subsys_1(U, Y)

struct _Sys_ExtIn *U;

struct _Subsys_1_out *Y;

{

 static RT_INTEGER iinfo[4];

 /***** Local Block Outputs. *****/

 RT_FLOAT new_11_1;

 RT_FLOAT new_12_1;

 /******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

 /***** Output Update. *****/

 /* ---------------------------- Read from Variable */

 /* {new..11} */

 new_11_1 = var;

 /* ---------------------------- Read from Variable */

 /* {new..1} */

 /* ---------------------------- Sum of Vectors */

 /* {new..12} */

 new_12_1 = U->new_1 + var1;

 /* ---------------------------- Write to Variable */

 /* {new..3} */

 var = new_12_1;

 /* ---------------------------- Sum of Vectors */

 /* {new..5} */

 Y->new_5_1 = U->new_1 - new_11_1;

 if (iinfo[1]) {

 SUBSYS_INIT[1] = FALSE;

Chapter 7 Code Optimization

AutoCode Reference 7-4 ni.com

 iinfo[1] = 0;

 }

 return;

 EXEC_ERROR: ERROR_FLAG[1] = iinfo[0];

 iinfo[0]=0;}}

AutoCode performs this optimization only if it is safe to do so. There
could be circumstances that could potentially prevent this optimization
from taking place. AutoCode looks for the presence of a
write-to-the-same-variable block between the Read from Variable block
statement and its use in later computations. AutoCode does not optimize
variable blocks under these circumstances, as doing so would change the
meaning of the program.

The subsystem code in Example 7-1 actually uses two global variable
blocks, namely var and var1. Example 7-2 shows the code generated with
global variable block optimization turned on. While variable block var1
is used directly in the summation block computation, an extra variable
new_11_1 is used for the variable block var. This is because there is a
Write to Variable block (modifying var) present in between the Read from
Variable block and its use in a summation block.

Optimization of local and global variables can be controlled independently.
The command-line arguments -Olvarblk and -Ogvarblk bring about the
optimization of extra variables associated with the Read from local and
global variable blocks, respectively.

Notice that the global variable block optimization will work only if they are
not shared between subsystems or only if the -vbco option is not used.

The following items could prevent AutoCode from optimizing Read from
Variable blocks.

• Presence of Write to the same variable block in between a Read from
Variable block and its use.

• Existence of a Procedure SuperBlock (Writing to the variable block)
between the Read from Variable block and its use.

• A dynamic block is connected to a Read from Variable block, and there
is a Write to same variable block in the subsystem (or procedure).
Since state UPDATE is done toward the end of the subsystem, the
Write to Variable block comes in between the Read from Variable
block and its use (in the state update).

• A Read from Variable block is outside a while loop, and the block
reading this variable block is inside the loop. The loop also contains a

Chapter 7 Code Optimization

© National Instruments Corporation 7-5 AutoCode Reference

Write to the same variable block. Due to the cyclic nature of loops, any
Write to Variable block inside the loop appears in between the Read
from Variable block outside the loop and its use inside the loop.

Restart Capability
AutoCode generates code that supports application restart capability—that
is, an application that is being run can be stopped and restarted again
without having to download it again. Although this feature is useful, it is
expensive because restarting an application requires restoring the initial
data. In order to accomplish this, all the initialization data has to be stored,
thus increasing the static storage size. The restart capability is useful during
the development phase of an application. As the application development
nears completion and is ready for deployment, the need for restarting an
application might not arise. AutoCode provides an option to optimize this
capability so that the optimal version does not carry this extra information.

The AutoCode command option -Onorestart optimizes away:

• Extra variables that store the initialization values

• Code that is used for the initialization purpose

Example 7-3 shows generated code that uses the restart capability.

Example 7-3 Sample Segment of Code with Restart Capability (Default Case)

void subsys_1(U, Y)

 struct _Sys_ExtIn *U;

 struct _Subsys_1_out *Y;

 {

 /***** States Array. *****/

 static struct _Subsys_1_states ss_1_states[2];

 /***** Current and Next States Pointers. *****/

 static struct _Subsys_1_states *X;

 static struct _Subsys_1_states *XD;

 static struct _Subsys_1_states *XTMP;

 static RT_INTEGER iinfo[4];

 static RT_INTEGER INIT;

 const RT_DURATION TSAMP = 0.1;

 /***** Parameters. *****/

 static RT_FLOAT R_P[8];

 RT_INTEGER cnt;

Chapter 7 Code Optimization

AutoCode Reference 7-6 ni.com

 static const RT_FLOAT _R_P[8] = {-1.0, 1.0, 1.5, 2.0, -1.0, 1.0,

1.25,1.4};

 /***** Local Block Outputs. *****/

 RT_FLOAT proc_2_1;

 RT_FLOAT proc_14_1;

 RT_FLOAT proc_12_1;

 /***** Algorithmic Local Variables. *****/

 RT_INTEGER ilower;

 RT_INTEGER iupper;

 RT_FLOAT uval;

 RT_INTEGER k;

 RT_FLOAT alpha;

 /******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 INIT = 1;

 X = &ss_1_states[0];

 XD = &ss_1_states[1];

 X->proc_12_S1 = 0;

 X->proc_4_S1 = 0.0;

 XD->proc_12_S1 = 0.0;

 XD->proc_4_S1 = 0.0;

 for (cnt=0;cnt<8;cnt++) {

 R_P[cnt] = _R_P[cnt];

 }

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

 ..

 ..

Example 7-3 shows excerpts of generated code relevant to the restart
capability. The buffer _R_P stores the initial parameter values, and during
initialization time this data is copied to the R_P buffer, which might
undergo modification. The initialization section also contains code that
explicitly initializes states, state derivatives, and info structures.
Example 7-4 shows the generated code without the restart capability. Here,

Chapter 7 Code Optimization

© National Instruments Corporation 7-7 AutoCode Reference

the buffer _R_P and the initialization code are optimized away. Instead, the
buffer R_P (parameter array), states, derivatives, and info structures are
initialized directly in the declaration portion. After these structures are
modified by computations, the initial values are lost, and the application
cannot be restarted again.

Example 7-4 Sample Segment of Code with Restart Capability Optimized Away

void subsys_1(U, Y)

struct _Sys_ExtIn *U;

struct _Subsys_1_out *Y;

{

 /***** States Array. *****/

 static struct _Subsys_1_states ss_1_states[2] = {{0.0, 0.0}, {0.0, 0.0}};

 /***** Current and Next States Pointers. *****/

 static struct _Subsys_1_states *X = &ss_1_states[0];

 static struct _Subsys_1_states *XD = &ss_1_states[1];

 static struct _Subsys_1_states *XTMP;

 static RT_INTEGER iinfo[4] = {0, 1, 1, 1};

 static RT_INTEGER INIT = 1;

 const RT_DURATION TSAMP = 0.1;

 /***** Parameters. *****/

 static RT_FLOAT R_P[8] = {-1.0, 1.0, 1.5, 2.0, -1.0, 1.0, 1.25, 1.4};

 /***** Local Block Outputs. *****/

 RT_FLOAT proc_2_1;

 RT_FLOAT proc_14_1;

 RT_FLOAT proc_12_1;

 /***** Algorithmic Local Variables. *****/

 RT_INTEGER ilower;

 RT_INTEGER iupper;

 RT_FLOAT uval;

 RT_INTEGER k;

 RT_FLOAT alpha;

 ..

 ..

Chapter 7 Code Optimization

AutoCode Reference 7-8 ni.com

Merging INIT Sections
Most of the dynamic blocks have explicit initialization, output update and
state update sections. The initialization section is guarded by an INIT
Boolean variable that is TRUE only for the first time a subsystem or a
procedure is called. Each initialization section is tested every time the
subsystem or procedure is executed. AutoCode supports an option where
all such initialization branches can be merged into a single initialization
branch.

The command option -Oinitmerge tries to merge all initialization
segments within a subsystem or a procedure. This speeds up applications,
particularly for processors with pipeline architecture such as Siemens
166/167. In this case, there would be considerable improvement in the
execution speed.

If AutoCode cannot merge all the INIT sections together, it creates a
separate INIT branch for the blocks that cannot be merged. This happens
when a block uses outputs of other blocks executed before it is in its
initialization section.

Example 7-5 shows generated code without the optimization,
and Example 7-6 shows generated code with the optimization.

Example 7-5 Sample Code Segment Generated by AutoCode without this Optimization

 /******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 INIT = 1;

 X = &ss_1_states[0];

 XD = &ss_1_states[1];

 X->proc_22_S1 = 0.0;

 X->proc_24_S1 = 0.0;

 XD->proc_22_S1 = 0.0;

 XD->proc_24_S1 = 0.0;

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

 /***** Output Update. *****/

Chapter 7 Code Optimization

© National Instruments Corporation 7-9 AutoCode Reference

 /* ---------------------------- Time Delay */

 /* {proc..22} */

 if (INIT) {

 X->proc_22_S1 = 0.0;

 }

 proc_22_1 = X->proc_22_S1;

 /* ---------------------------- Time Delay */

 /* {proc..24} */

 if (INIT) {

 X->proc_24_S1 = 0.0;

 }

proc_24_1 = X->proc_24_S1;

/* ---------------------------- Sum of Vectors */

/* {proc..14} */

proc_14_1 = U->proc_1 - proc_22_1;

/* ---------------------------- Gain Block */

/* {proc..12} */

proc_12_1 = 2.0*proc_14_1;

/* ---------------------------- Sum of Vectors */

/* {proc..5} */

proc_5_1 = proc_12_1 - proc_24_1;

/* ---------------------------- Gain Block */

/* {proc..4} */

Y->proc_4_1 = 2.0*proc_5_1;

/***** State Update. *****/

/* ---------------------------- Time Delay */

/* {proc..22} */

XD->proc_22_S1 = proc_12_1;

/* ---------------------------- Time Delay */

/* {proc..24} */

XD->proc_24_S1 = Y->proc_4_1;

..

..

Example 7-6 Sample Code Segment Generated with Merging of INITs (-Oinitmerge) Option

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 X = &ss_1_states[0];

 XD = &ss_1_states[1];

Chapter 7 Code Optimization

AutoCode Reference 7-10 ni.com

 X->proc_22_S1 = 0.0;

 X->proc_24_S1 = 0.0;

 XD->proc_22_S1 = 0.0;

 XD->proc_24_S1 = 0.0;

 /* ---------------------------- Time Delay */

 /* {proc..22} */

 X->proc_22_S1 = 0.0;

 /* ---------------------------- Time Delay */

 /* {proc..24} */

 X->proc_24_S1 = 0.0;

 SUBSYS_PREINIT[1] = FALSE;

 return;

 }

/***** Output Update. *****/

/* ---------------------------- Time Delay */

/* {proc..22} */

proc_22_1 = X->proc_22_S1;

/* ---------------------------- Time Delay */

/* {proc..24} */

proc_24_1 = X->proc_24_S1;

/* ---------------------------- Sum of Vectors */

/* {proc..14} */

proc_14_1 = U->proc_1 - proc_22_1;

/* ---------------------------- Gain Block */

/* {proc..12} */

proc_12_1 = 2.0*proc_14_1;

/* ---------------------------- Sum of Vectors */

/* {proc..5} */

proc_5_1 = proc_12_1 - proc_24_1;

/* ---------------------------- Gain Block */

/* {proc..4} */

Y->proc_4_1 = 2.0*proc_5_1;

/***** State Update. *****/

/* ---------------------------- Time Delay */

/* {proc..22} */

XD->proc_22_S1 = proc_12_1;

/* ---------------------------- Time Delay */

/* {proc..24} */

XD->proc_24_S1 = Y->proc_4_1;

..

..

Chapter 7 Code Optimization

© National Instruments Corporation 7-11 AutoCode Reference

In Example 7-5, both time delay blocks have separate INIT sections. In
Example 7-6, the initialization code for these blocks is merged along with
the subsystem initialization section.

Reuse of Temporary Block Outputs
Subsystems and procedures generated by AutoCode contain computations
of individual blocks. Output of these blocks could be subsystem
(procedure) outputs, or it could be temporary. Temporary block outputs are
used immediately in the subsequent computations. The temporary block
outputs are implemented in the generated code as automatic variables and
each block output is mapped by default to a unique variable. Although this
improves readability and makes the generated code traceable to the model,
for very large subsystems (or procedures), this could increase the stack
size. AutoCode provides an option to reuse such temporary block outputs,
thus reducing the stack size and bringing down the risk of stack overflow.

AutoCode provides two ways of reusing temporary block output:

• Reuse whenever specified (by the user)

• Maximal reuse (reuse whenever possible)

Reuse Temporaries as Specified
In this mode, a temporary variable is reused only if you specify it and if it
is safe to do so. You can specify reuse by entering a variable name in the
output name field in the output form of a block. Refer to the SystemBuild
User Guide for more details on output forms. Even if this temporary
variable was already used as an output name for another block output,
AutoCode tries to reuse it. If the temporary variable is not used (or needed)
anymore, then AutoCode uses it as the output variable for the current block.
In a case where the variable identified cannot be reused, a distinct (entirely
new) variable is used. The command-line option for this optimization mode
is -Oreuse 1.

Maximal Reuse of Temporaries
In this optimization mode, AutoCode tries to reuse as many temporary
variables as it can. Again, a temporary variable is reused only if it is not
needed in any further computations. The command-line option -Oreuse 2
brings about this optimization.

Chapter 7 Code Optimization

AutoCode Reference 7-12 ni.com

Example 7-7 shows code generated without the reuse option, and
Example 7-8 shows code generated from the same models with the
maximal reuse option.

Example 7-7 Code Fragment without Reuse Optimization

 /***** Local Block Outputs. *****/

 RT_FLOAT model_2_1;

 RT_FLOAT model_3_1;

 RT_FLOAT model_4_1;

 /***** Output Update. *****/

 /* ---------------------------- Time Delay */

 /* {model..5} */

 if (INIT) {

 X->model_5_S1 = 0.0;

 }

 Y->model_5_1 = X->model_5_S1;

 /* ---------------------------- Gain Block */

 /* {model..2} */

 model_2_1 = 2.0*U->model_1;

 /* ---------------------------- Sum of Vectors */

 /* {model..3} */

 model_3_1 = model_2_1 - U->model_1;

 /* ---------------------------- Gain Block */

 /* {model..4} */

 model_4_1 = 3.0*model_3_1;

 /***** State Update. *****/

 /* ---------------------------- Time Delay */

 /* {model..5} */

 XD->model_5_S1 = model_4_1;

Example 7-8 Code Fragment Generated with Maximal Reuse Option (-Oreuse 2)

 /***** Local Block Outputs. *****/

 RT_FLOAT model_2_1;

 RT_FLOAT model_3_1;

/***** Output Update. *****/

/* ---------------------------- Time Delay */

/* {model..5} */

if (INIT) {

 X->model_5_S1 = 0.0;

Chapter 7 Code Optimization

© National Instruments Corporation 7-13 AutoCode Reference

}

Y->model_5_1 = X->model_5_S1;

/* ---------------------------- Gain Block */

/* {model..2} */

model_2_1 = 2.0*U->model_1;

/* ---------------------------- Sum of Vectors */

/* {model..3} */

model_3_1 = model_2_1 - U->model_1;

/* ---------------------------- Gain Block */

/* {model..4} */

model_2_1 = 3.0*model_3_1;

/***** State Update. *****/

/* ---------------------------- Time Delay */

/* {model..5} */

XD->model_5_S1 = model_2_1;

In Example 7-7 (code generated without reuse option), each block has a
distinct and unique output variable. In Example 7-8 (code generated with
the maximal reuse option), the variable model_2_1, which is the output
variable for the block model..2, is used only in the computation for block
model..3. It is free to be used again after the computation for model..3
is complete, and in fact the generated code reuses the variable model_2_1
as the output variable of the block model..4.

Constant Propagation
AutoCode supports an option to propagate constants in the generated
code. Source of constants in a model are typically algebraic and logical
expression blocks. For the sake of this optimization, you can partition all
of the blocks into two categories.

• Blocks that can propagate constants

• Blocks that cannot propagate constants

Most of the blocks from palettes such as ALG, PWL, LOG, TRG, and PEL,
belong to the first category (propagate constants), and if all of the inputs to
such blocks are constants, the output value is computed during compile
time, and no code is generated for such a block. The blocks belonging to
the second category (cannot propagate constants), are from other palettes
such as DYN, SGN, and NTP. These blocks do not propagate outputs even
if all of their inputs are constants. Code is generated for such blocks.

Chapter 7 Code Optimization

AutoCode Reference 7-14 ni.com

All of the blocks can accept constants as inputs. If any input is available
during code generation time as a constant, the constant is used instead of a
symbol name (or variable name). This applies to blocks of both categories.

One limitation to this optimization is that a block cannot propagate
constants or even accept constants as inputs if its inputs or outputs contain
vectors. Such blocks with vector inputs or outputs use only the variable
name (or symbol name) and hence force the source blocks to generate code
for computing the value of output variables.

Example 7-9 shows code generated without constant propagation, and
Example 7-10 shows code generated with constant propagation.

Example 7-9 Code Generated without the Constant Propagation Option

void subsys_1(Y)

struct _Subsys_1_out *Y;

{

 static RT_INTEGER iinfo[4];

 /***** Local Block Outputs. *****/

 RT_FLOAT const_1_1;

 RT_FLOAT const_11_1;

 RT_FLOAT const_2_1;

 /******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 SUBSYS_PREINIT[1] = FALSE;

 return;

}

/***** Output Update. *****/

/* ---------------------------- Algebraic Expression */

/* {const..1} */

const_1_1 = 5.0;

/* ---------------------------- Algebraic Expression */

/* {const..11} */

const_11_1 = 3.0;

/* ---------------------------- Sum of Vectors */

/* {const..2} */

const_2_1 = const_1_1 - const_11_1;

/* ---------------------------- Gain Block */

Chapter 7 Code Optimization

© National Instruments Corporation 7-15 AutoCode Reference

/* {const..4} */

Y->const_4_1 = 2.0*const_2_1;

..

..

Example 7-10 Code Generated with the Constant Propagation Option

void subsys_1(Y)

struct _Subsys_1_out *Y;

{

 static RT_INTEGER iinfo[4];

 /***** Local Block Outputs. *****/

 /******* Initialization. *******/

 if (SUBSYS_PREINIT[1]) {

 iinfo[0] = 0;

 iinfo[1] = 1;

 iinfo[2] = 1;

 iinfo[3] = 1;

 SUBSYS_PREINIT[1] = FALSE;

 return;

}

/***** Output Update. *****/

/* ---------------------------- Algebraic Expression */

/* {const..1} */

/* ---------------------------- Algebraic Expression */

/* {const..11} */

/* ---------------------------- Sum of Vectors */

/* {const..2} */

/* ---------------------------- Gain Block */

/* {const..4} */

Y->const_4_1 = 4.0;

..

..

In Example 7-10, during code generation time, AutoCode figures out that
the outputs of both the algebraic expressions are constants and feeds them
to the summation block. As all of the inputs to the summation block are
constants (5 and 3), AutoCode computes the output of the summation block
at code generation time (const_2_1 = 5 - 3 = 2). This becomes the

Chapter 7 Code Optimization

AutoCode Reference 7-16 ni.com

input of the gain block and the expression 2.0 * const_2 is evaluated to
4 as the value of const_2_1 is 2. Hence, the subsystem output gets the
value 4.

The command-line option for invoking this optimization is -Opc.

Optimizing with Matrix Blocks
Outputs labeled as matrices are generated as vectors, so most matrix blocks
can be optimized by following the rules you would follow for any other
vectorized block:

• Try to group all the outputs into a single vector (or matrix) so the
output variable will be an array

• Try to connect all the inputs from the same output array of a single
block, in a smooth stride

In general, this leads to looped code rather than unrolled code being
generated for a block—which reduces the code footprint—or at least to the
fewest number of loops per block. This applies to the MatrixTranspose,
MatrixMultiply, LeftMultiply, RightMultiply, and ScalarGain blocks.

Optimizing with Constant Blocks
Constant blocks are highly optimized by design. When you create a
constant block and label the output as a single matrix, you will not see any
code generated for the block—the constant values defined in the block will
be part of the declaration of the block output variable at the top of the
containing subsystem or procedure.

By default, such output variables are declared as type “static” in C or
“constant” in Ada and thus should not require separate assembly
instructions to load values into position. For C, you can make them stack
variables (automatics) by modifying the definition of RT_CONSTANT in the
sa_types.h file. If you declare the output variable to be a stack variable,
assembly instructions are generated to load its values into place each time
the containing subsystem or procedure is executed.

The previous information applies provided you have not used a %Variable
in the block. If a %Variable is present, a different optimization takes over.
Instead of putting values into the declaration—which you cannot do in the
case of a %Variable—you perform forward propagation on the constant
block, replacing references to the constant block with direct references to
the associated %Variable. If all use points can be so optimized, the entire

Chapter 7 Code Optimization

© National Instruments Corporation 7-17 AutoCode Reference

constant block is optimized away, including the output variable. Also notice
that the existing Constant Propagation optimization can be used with the
constant block, but will only operate on scalar pieces of the constant block
output.

Optimizing with Callout Blocks
The MatrixInverse, MatrixRightDivide, and MatrixLeftDivide blocks are
implemented with callouts and therefore carry a special set of rules that
must be followed to generate optimal code. The most important rule,
applicable to all three blocks, is that the block output should be labeled as
a single matrix or vector (or generate code using maximal vectorization).
This is because the algorithms associated with these blocks are stand-alone
entities with fixed interfaces; a single array is used for the block output for
the MatrixInverse, MatrixRightDivide, and MatrixLeftDivide algorithms.

When the output of a callout block in the generated code is spread among
several different variables, a copy-back must be emitted after the callout to
ensure the results are correctly stored in the desired output variables.
Following this rule can have a significant impact on code generation for
these three blocks. However, regarding input rules, the callout interface
introduces certain constraints on inputs if optimality is desired.

Optimizing with Inverse Blocks
The MatrixInverse block callout has a single argument which is both the
input and output to the inversion algorithm. Thus, the input is modified by
the algorithm. For this reason, a copy-in must always be done for this block
and the input connectivity is not nearly as important as the output
connectivity. You may see tighter code with good input connectivity,
because the copy-in will be looped rather than unrolled, but the copy-in will
still be present.

Optimizing with Division Blocks
The two division blocks: MatrixRightDivide and MatrixLeftDivide, solve
the equations XA = B and AX = B, respectively. When you consider which
to use for your application, notice that you will get more efficient code by
using the MatrixRightDivide rather than the MatrixLeftDivide. This is
because AutoCode generates output matrices in row-major order, whereas
the LINPACK callouts are written expecting column-major inputs.
Solving AX = B under such mismatched conditions requires an extra
transpose-copy not required to solve XA = B.

Chapter 7 Code Optimization

AutoCode Reference 7-18 ni.com

If you have decided on the MatrixRightDivide block, the tips for optimizing
the inputs are much the same as for the MatrixInverse block. In this case
there are two inputs, A and B, and both are modified by the callout
algorithm. Thus, a copy-in must occur for each input. Again, you cannot
avoid the copy-in, but you can get tighter code with good input connectivity
because the code will be looped rather than unrolled.

If you cannot avoid using the MatrixLeftDivide block, you should know
how to cause it to be generated with maximum optimality. This block has a
built-in optimization that kicks in when the B matrix (from AX=B) is a row
or column vector. When this built-in optimization is active, both the A and
B inputs are modified by the callout algorithm and each must be subjected
to a copy-in. Good input connectivity will let you generate looped rather
than unrolled code, but the copy-in cannot be avoided. Furthermore, the
disadvantage to using the MatrixLeftDivide block does not apply with the
optimization active.

If your B matrix is not a row or column vector, then the algorithm must
do an internal transpose-copy. Under these circumstances, the A input is
modified by the algorithm, but the B input is not. Thus, the copy-in is
unavoidable for the A input but will only be present for the B input if you
have bad connectivity.

For this reason, it is very important when dealing with a MatrixLeftDivide
that has a true matrix (not 1 × n or n × 1) as B that you have good input
connectivity—just as important as the rule mentioned earlier about
applying to all three callout blocks encouraging good output connectivity.
In this case, good input connectivity for B means that B can be taken in
place from the source matrix.

For a summary of inputs and outputs for callout blocks, refer to Table 7-1.

Chapter 7 Code Optimization

© National Instruments Corporation 7-19 AutoCode Reference

Summary
All of the optimizations discussed so far can be used at the same time
without limitations. All of these optimizations can work together and
potentially bring about a cumulative effect in reducing the code size or
improving the execution speed of an application. In general, the restart
optimization, varblock read, and constant propagation can help reduce the
code size, while merging of INITs, constant propagation, and varblock read
optimizations improve execution speed. The reuse of temporaries helps
reduce stack size, and could prevent stack overflow problems. Prudent use
of the Constant Block can reduce code size, and its use is preferred over the
Algebraic Expression Block for defining constants. By using these
optimizations, you can generate optimal C or Ada source code. The
executable (or the object) file size depends on the compiler used for
compiling the source code. Execution speed of an application ultimately
depends on the target processor.

Table 7-1. Optimization Table for Callout Blocks

Block Output (X) Input A Input B

MatrixInverse Copy only if output is
not a single array

Mandatory copy-in Not applicable

MatrixRightDivide
or MatrixLeftDivide
(if B is z × n or n × 1)

Copy only if output is
not a single array

Mandatory copy-in Mandatory copy-in

MatrixLeftDivide
(if B is m × n, m > 1,
or n > 1)

Copy only if output is
not a single array

Mandatory copy-in Copy only if input
connectivity prohibits
using source array
directly

© National Instruments Corporation 8-1 AutoCode Reference

8
AutoCode Sim Cdelay Scheduler

This chapter discusses the Sim Cdelay low-latency scheduler.

Introduction
The default AutoCode scheduler is based on high throughput. Latency is
acceptable as long as scheduler interrupt times are frequent. Because of this
emphasis, each scheduler cycle is kept to an absolute minimum so that task
queuing and output posting occurs only once per cycle. While providing
high throughput and determinacy, this strategy has an impact on the latency
of triggered and enabled tasks. For example, after an enable goes high, it
takes one cycle for the task to be queued, and a second cycle before the
output gets posted. This process works similarly for triggered tasks. The
upshot is that the current AutoCode scheduler incurs a two-cycle delay
when firing off any enabled or triggered tasks, and a sequence of such
delays in firing off chains of such tasks.

The MATRIXx product line lets you reproduce the behavior of the
generated code with Sim. To match the default AutoCode scheduler, Sim
can be invoked with the actiming option. However, a Sim user also has
available two simulation options that do not mimic the default AutoCode
scheduler:

• Sim with Cdelay

• Sim without Cdelay

While Sim without Cdelay represents an unrealistic goal for a real-time
system (no computational delay for any device), Sim with Cdelay not only
is realizable on real-time hardware, it avoids the latency problems that
plague Sim with actiming, while preserving determinacy. Its only
drawbacks are that it requires a slightly longer overhead per scheduler
invocation, and it cannot completely escape the latency problems present in
the default AutoCode scheduler if chained ANC tasks are present in the
model. Despite these limitations, it is vastly superior to the default
AutoCode scheduler at latency reduction.

The remainder of this chapter describes a new AutoCode scheduler that
matches the Sim with Cdelay behavior and is capable of executing on

Chapter 8 AutoCode Sim Cdelay Scheduler

AutoCode Reference 8-2 ni.com

real-time hardware. It assumes the reader is familiar with the concepts of
AutoCode’s default scheduler. Refer to the AutoCode User Guide for more
information about the scheduler, task types, and output posting.

Task Posting Policies
The task characteristics that have the most impact on scheduler design are
task type, and output posting policy. For real-time applications, there are
two workable, mutually exclusive posting strategies a task can adopt:

• ANC, or At Next Computation

• ATR, or At Timing Requirement

A task, which is ANC, is invoked, starts its computation and, after the result
has been calculated, caches it without posting. The next time that task is
invoked, the cached result is posted before the computation starts. The
important point about ANC tasks is that enabling or triggering them can
generate an immediate output, even in real-time applications, without
waiting for a computational delay.1 Conversely, when an ATR task is
invoked, it starts its computation, caches the result, and posts it exactly
t minimum scheduler cycles after its invocation, where t is the timing
requirement.

Now that the posting policies are understood, the map from task types to
posting policies can be studied. For free-running periodic tasks, you do not
even need the concept of a posting policy, because the difference between
posting at the end of one cycle and posting at the beginning of the next
(before inputs are sampled and held) is meaningless. For triggered tasks,
the posting policy is necessary and sufficient to provide a description; ANT
triggered tasks are ANC, while ATR/SAF triggered tasks are ATR. For SAF
triggered tasks, the timing requirement is assumed to be the minimum
scheduler cycle. Finally, notice that from what is stated above the output
posting policy of enabled periodic tasks is not yet determined—it can be
either ANC or ATR.

With enabled tasks, there is also a notion of the enable policy, which
determines when the task is invoked rather than when it posts its outputs.
You can demand that enabled tasks are launched only on the global timeline
major cycle points for tasks of that rate, or allow such tasks to be
immediately launched on the first scheduler minor cycle that the enable is
known to be high.

1 Later in this chapter, this will be shown to lead to the ANC Chaining Problem.

Chapter 8 AutoCode Sim Cdelay Scheduler

© National Instruments Corporation 8-3 AutoCode Reference

Standard AutoCode Scheduler
To illustrate the behavior of the standard AutoCode scheduler with
triggered and enabled SuperBlocks, it is helpful to consider the diagnostic
model shown in Figure 8-1, which features such SuperBlocks driven by a
5 Hz pulse train and fed a time signal as input.

Chapter 8 AutoCode Sim Cdelay Scheduler

AutoCode Reference 8-4 ni.com

Figure 8-1. Model with Enabled and Triggered Tasks

Under the default AutoCode scheduler, the output of this system is as
shown in Figure 8-2. The top signal (corresponding to the triggered task)
shows a latency of two cycles relative to its trigger input (immediately
below), while the lower signal (corresponding to the enabled task) shows a
latency of three cycles relative to its enable input. You will observe in the

Chapter 8 AutoCode Sim Cdelay Scheduler

© National Instruments Corporation 8-5 AutoCode Reference

Scheduler Pipeline section that these latencies are caused by the single
posting stage per scheduler invocation in the default AutoCode scheduler,
and by the output posting policy assigned to enabled blocks in the default
scheduler.

Figure 8-2. Latencies Present in Default AutoCode Scheduler

Scheduler Pipeline
To understand these latencies, you need to know what operations are
performed during each scheduler invocation under the default scheduler.
These are best presented in the form of a pipeline diagram as shown in
Figure 8-3. Stage A resets the priority associated with each DataStore
register so that anyone can write to it. Stage B is where any interpolation
occurs to generate internally needed timepoints from an irregularly-spaced
input vector. In stage C, tasks whose launch times have arrived or whose

Time

0 0.5 1 1.5

0
0.2
0.4
0.6
0.8
1

0
0.2
0.4
0.6
0.8
1

0
0.2
0.4
0.6
0.8
1

1.2

0
0.2
0.4
0.6
0.8
1

1.2

en
ab

_s
ig

na
l

en
ab

_s
b_

ou
t

Tr
ig

ge
r

S
ig

na
l

tr
ig

_s
b_

ou
t

Chapter 8 AutoCode Sim Cdelay Scheduler

AutoCode Reference 8-6 ni.com

triggers/enables have gone high are queued for execution. Then, in stage D,
ATR tasks whose output posting times have arrived and ANC tasks that
have just been queued for execution in stage C are marked for output
posting, which is stage E.1, 2 Datastores are written from external inputs in
stage F (overwriting any previous values for that cycle). Finally, in stage G,
queued tasks are dispatched for execution.

Figure 8-3. Scheduler Pipeline Stages in the Standard AutoCode Scheduler

Given this flow, you now can explain why the delays are present for the
triggered and enabled subsystems. Take the case of the triggered subsystem
first. When the triggered task’s trigger input is posted high at 0.6 sec, the

1 Notice that in the standard template, certain loops internal to a stage have been lifted to include two or three stages—for
example, stages D, E, and F.

2 Any DataStores driven by task outputs are written to during this cycle.

Reset DataStore
Writers to Low
Priority

Read External
 Inputs

Queue Tasks

Identify Outputs
to Post

Post Outputs

Write DataStores
from External
Inputs

Dispatch Tasks

A

B

C

D

E

F

G

Chapter 8 AutoCode Sim Cdelay Scheduler

© National Instruments Corporation 8-7 AutoCode Reference

queue tasks stage for that scheduler invocation has already passed; thus, the
triggered task cannot be queued for execution until 0.7 sec. At the time that
it is queued, it sets its time delay for 0.1 sec. Thus, its output is not posted
until the next scheduler invocation. In total, two scheduler ticks have thus
passed before the triggered task’s outputs have been posted.

The case of the enabled task is slightly more complicated. In this case, you
care not only about the scheduler pipeline itself but also about the output
posting policy of the task in question. Enabled tasks under the default
AutoCode scheduler are assigned a post on next computation output
paradigm. Now consider the output in Figure 8-1 for the enabled task;
the enable input rises at 0.6 sec. As this corresponds to the post outputs
stage of a scheduler invocation, the queue tasks stage has already occurred.
Therefore, you must wait until 0.7 sec, when you enter the next scheduler
invocation, for the enabled task to be queued for execution.

Now you must bring into play the fact that enabled periodic tasks are
ANC in the default scheduler; results of an invocation of an enabled task
are only posted on the next invocation of that task. At the end of the 0.7 sec
scheduler invocation, the enable input goes low, which means that the
enabled task is not enabled for the 0.8 sec scheduler invocation. Thus, the
task is not invoked again, and it posts no output; however, its enable input
does go high at the end of this cycle. Finally, at the 0.9 sec scheduler
invocation, the enabled task is invoked again and the cached result from the
last computation is posted. The total observed delay for the enabled task,
from enable going high to output being posted, is thus three scheduler ticks.
In the case of this and the preceding analysis, it might benefit you to refer
to the state transition diagrams (default scheduler) for each type of task in
Chapter 4, Managing and Scheduling Applications, of the AutoCode User
Guide.

Managing DataStores in the Scheduler
Notice that DataStores in a model do not translate into tasks—they are
handled separately by the scheduler during the output posting phase of the
scheduler pipeline. As there could be multiple attempts to write into a
DataStore during a single scheduler invocation, a constraint that must
always be observed is that a task can write into a DataStore on a particular
scheduler cycle if and only if no task of higher priority has already written
to it. In the default scheduler, this is trivially enforced by ordering the firing
of tasks in the (single) output posting stage so that lower priority tasks fire
first, but the same constraint will become of key importance (and a
potential stumbling point) when it comes time to implement the new
scheduler.

Chapter 8 AutoCode Sim Cdelay Scheduler

AutoCode Reference 8-8 ni.com

Now the inherent problem in the standard scheduler is clear. From launch
to output posting, you suffer a two-cycle delay for triggered tasks, and a
three-cycle delay for enabled tasks, instead of the standard unit cycle delay
present on real-time hardware for free-running periodic tasks. Your goal
will be to reduce both of these latencies to single-cycle delays. The
scheduler pipeline stages in the Sim Cdelay AutoCode scheduler are shown
in Figure 8-4.

Figure 8-4. Scheduler Pipeline Stages in the Sim Cdelay AutoCode Scheduler

Reset DataStore
Writers to Low
Priority

Read External
 Inputs

Queue Tasks

Identify Outputs
to Post

Post Outputs

Write DataStores
from External
Inputs

Dispatch Tasks

Identify Outputs
to Post

Post Outputs

A

B

C

D

E

F

G

H

I

ATR tasks

ANC tasks

Chapter 8 AutoCode Sim Cdelay Scheduler

© National Instruments Corporation 8-9 AutoCode Reference

Sim Cdelay Scheduler
As stated at the outset, the goal of this project was to develop a new
AutoCode scheduler, runnable on real-time targets, which mimics the
behavior of Sim with Cdelay (actiming off). Sim with Cdelay differs
from Sim with actiming in several key ways, including scheduler
pipeline, task output posting policies, enable policies, and retriggering
behavior for triggered tasks.

Notice that, unlike the stock AutoCode scheduler, Sim with Cdelay’s
scheduler posts outputs twice per invocation. Outputs of tasks that are ATR
are posted exclusively during the first output posting stage, while tasks that
are ANC have their outputs posted during the second output stage. Between
the two output postings stages is the queue tasks phase, which queues up
those tasks that are ready to start executing that cycle. Because all the ATR
tasks post their outputs before this stage, it is clear that under this new
pipeline configuration, any task enabled or triggered by an ATR task will
be queued for execution during the same cycle its input goes high.

In addition to the altered scheduler pipeline, Sim with Cdelay also entails
new output posting options for certain tasks. In fact, the output posting
policy of all periodic blocks (both free-running and enabled) goes from
ANC (Sim with actiming) to ATR (Sim with Cdelay). For free-running
tasks, ANC versus ATR does not really make a difference—it is just a
paradigm shift. However, for enabled periodic tasks, the shift from ANC to
ATR leads to a very tangible reduction in output posting latency.

One of the remaining changes brought by Sim with Cdelay is the move
from a sync immediate on enable policy (default AutoCode scheduler), in
which the enabled task is queued for execution on the first minor cycle its
enable input is seen to go high, to a global timeline enable policy. Unlike
the previous two modifications, this switch has a deleterious effect on
output latency. The enable policy only matters in a given model if the
scheduler minor cycle differs from the major cycle of one of the tasks; thus,
it has no effect on the model presented at the beginning of this chapter.

The other change entailed by Sim with Cdelay affects how retriggering is
handled for ATR triggered tasks if the computation has concluded but the
task has not yet posted its outputs. The default scheduler queues the trigger
(at most one), releasing it (and allowing the system to be triggered again)
only when its outputs are finally posted. Conversely, with Sim with Cdelay,
the trigger is immediately acted on, even though the outputs have not been
posted. Notice that this has the unfortunate consequence that a sequence of

Chapter 8 AutoCode Sim Cdelay Scheduler

AutoCode Reference 8-10 ni.com

triggers arriving too quickly can prevent a task from ever posting any
output.

You must build an alternative AutoCode scheduler incorporating the new
pipeline stages presented above, and change the transition diagrams of
many of the task types to reflect changed output posting, enable, and
retriggering policies. In the case of the enable and retriggering policies,
however, you will want to include switches that let you fall back to the
original AutoCode behavior for these options because the Sim choices have
the previously mentioned drawbacks.

State Transition Diagrams of Tasks under Sim Cdelay
New transition diagrams were developed for free-running and enabled
periodic tasks, and for ATR triggered tasks. Figure 8-5 shows a new STD
for free-running periodic tasks. Figure 8-6 shows a new STD for ATR
triggered tasks. Figure 8-7 shows a new STD for ATR triggered tasks.

Figure 8-5. New STD for Free-Running Periodic Tasks

IDLE RUNNING BLOCKED

Reset output
countdown timer

Timer has reached
zero, signal overflow

task
done

Countdown
timer is zero,
reset it and
post outputs

Timer greater
than zero,
decrement it

Chapter 8 AutoCode Sim Cdelay Scheduler

© National Instruments Corporation 8-11 AutoCode Reference

Figure 8-6. New STD for ATR Triggered Tasks

Figure 8-7. New STD for ATR Triggered Tasks

IDLE RUNNING

BLOCKED

task
done

Timer is zero and
enable, reset timer
and post outputs

Timer is zero and
!enable, reset
timer and post
outputs

Timer greater
than zero,
decrement it

Timer has reached
zero, signal overflow

Timer greater
than zero,
decrement it

Timer is zero and
!enable, reset timer

Timer is zero and
enable, reset timer

IDLE RUNNING

BLOCKED

task
done

Timer greater
than zero and
!trigger, decrement
timer

Timer is zero and
!trigger, post
outputs

Timer is zero and
trigger, reset timer
and post outputs

Timer greater than
zero and trigger,
reset timer

Trigger,
reset timer

Timer is zero
or trigger,
signal overflow

Chapter 8 AutoCode Sim Cdelay Scheduler

AutoCode Reference 8-12 ni.com

These transition diagrams, together with the diagrams in Chapter 4,
Managing and Scheduling Applications, of the AutoCode User Guide,
define the behavior of tasks under the Sim with Cdelay scheduler. They
encompass all of the changes to the default scheduler outside the scheduler
pipeline, and embody the new output posting, enable, and retriggering
policies. Together with the new pipeline configuration, these diagrams
provide you with enough information to completely implement the new
scheduler.

Implementing the Sim Cdelay AutoCode Scheduler
The new scheduler can largely be implemented as a new template. In the
new template, the large-scale layout of the scheduler is determined by the
new pipeline configuration, and the variable manipulations inside each
scheduler stage are determined by the STDs for the various task types.

Implementation Details
Some of the implementation details are as follows:

• When a task attempts to write to a DataStore, the write must only be
allowed to go through if no task of higher priority has written to that
same location on the current scheduler cycle. In the default AutoCode
scheduler, this is enforced by ordering the posting of outputs to post
from least priority task first and the highest priority task last, thereby
obviating the need for active checks. With the new scheduler, however,
you have two separate output posting stages. As a result, it is necessary
to develop an active protection mechanism whereby the priority of a
writer to a DataStore register is stored, and later used in a guard. This
will be discussed in depth in the DataStore Priority Problem section.

• The output posting policy for all periodic tasks changes from ANC to
ATR in the transition to the new scheduler. Thereby, the periods of
periodic tasks should be stored in the template parameter
OUTPUTCOUNT_LI. In the default scheduler, this vector is zero except
for ATR triggered tasks. The timing requirements also can be obtained
from SCHEDULINGCOUNT_LI, as they are for the (ANC) periodic tasks
in the default scheduler, but this is not good design.

• Under the new scheduler, free-running periodic tasks have a blocked
state used only during start-up so they can be initialized to have timer
values of zero without causing meaningless outputs to be posted.
Under the default scheduler, there is no blocked state for free-running
periodic tasks; thus, the template parameter INITIALTASKSTATE_LS
must be altered.

Chapter 8 AutoCode Sim Cdelay Scheduler

© National Instruments Corporation 8-13 AutoCode Reference

DataStore Priority Problem
As mentioned, you must find some way to enforce the priority of writers to
DataStores in the generated code. Each DataStore register can be written to
independently, so each one needs to be independently subjected to the
priority constraint. In the default scheduler, there is no need to actively
enforce the constraint, as it is automatically preserved by the order in which
outputs are posted in the single output stage. However, in the new
scheduler, there are two output posting stages, and the same technique will
not work.

An efficient solution—the one implemented—involves noticing that only
the registers in DataStores written to by both ANC and ATR tasks need be
actively monitored. For example, if a register is written to only by ANC
tasks, it is written entirely in the first stage and ordering the writes from
lowest to highest priority would enforce the constraint as in the default
scheduler. So you only need to create a priority array with just enough
space to hold priorities of registers in DataStores written to by both types
of tasks. Furthermore, observe that the problem is caused by the need to
preserve information across the gap between the first and second output
posting stages. You do not care about the regime before the first stage or
after the second.

Thus, if you call the set of registers in DataStores written to by both ANC
and ATR tasks Alpha, it would suffice to record the priority of each writer
to a member of Alpha only in the first output stage, because within the
second stage repeated writes do not matter because of the order in which
the write loop is executed. Likewise, guards are not needed in the first
output stage because of the write loop order. All you need to do is record
the priority of the writers to members of Alpha in the first stage, and wrap
writes to members of Alpha with guards in the second stage.

Some pseudocode for this, assuming a single DataStore register in Alpha,
is shown in Example 8-1.

Example 8-1 Pseudocode for Single DataStore Register in Alpha

for tsk <- low_prio_tsk..high_prio_tsk do {

 /* loop from low to high priority */

if tsk.ready_to_post_outputs() {

 write_register(tsk.output()); /*write to datastore register*/

 reg_prio = tsk.prio(); /*save priority of writer*/

 }

}

/* Queue Tasks */

Chapter 8 AutoCode Sim Cdelay Scheduler

AutoCode Reference 8-14 ni.com

for tsk <- low_prio_tsk..high_prio_tsk do {

 /* loop from low to high priority */

if tsk.ready_to_post_outputs()

 if tsk.prio() > reg_prio /* higher priorities are larger */

 write_register(tsk.output()); /*write to datastore register*/

In the generated code, the priorities of all DataStore registers in Alpha are
stored in a single, file-scoped array called DSTORE_GUARD, which is
optimized away if Alpha is empty.

Using the Sim Cdelay Scheduler
With the new template in place, the choice of scheduler can be made easily
at AutoCode run time by use of a new command-line option. Given a
current version of AutoCode and the new template, using it without any
new command options generates code with the default scheduler algorithm.
Using it with a -sched 1 option, however, switches in the new scheduler.
Issuing the command:

% autostar -l c -sched 1 trig_model.rtf

should, for example, generate code in trig_model.c employing the new
scheduler. Under the Sim with Cdelay scheduler, the model of Figure 8-1,
behaves as shown in Figure 8-8. The latency of the triggered and enabled
SuperBlocks has been reduced to a single scheduler tick.

Chapter 8 AutoCode Sim Cdelay Scheduler

© National Instruments Corporation 8-15 AutoCode Reference

Figure 8-8. Latencies Present in the AutoCode Scheduler

Template Configuration for Enhanced Performance
As mentioned in a previous section, there are drawbacks to re-executing an
ATR task when it is re-triggered before its outputs have been posted, and
to adopting a global timeline enable policy (increased latency). Thus, a
transition diagram is provided in Figure 8-9 can be substituted for that of
Figure 8-6 to obtain the main features of Sim with Cdelay, while retaining
the original AutoCode enable policy (sync immediate on enable). The
original AutoCode retriggering policy can be recaptured by using the STD
for ATR tasks shown in Chapter 4, Managing and Scheduling Applications,
of the AutoCode User Guide, in lieu of Figure 8-7.

Time

0 0.5 1 1.5

0
0.2
0.4
0.6
0.8
1

1.2
1.4

0
0.2
0.4
0.6
0.8
1

1.2
1.4

0
0.2
0.4
0.6
0.8
1

0
0.2
0.4
0.6
0.8
1

en
ab

_s
ig

na
l

en
ab

_s
b_

ou
t

Tr
ig

ge
r

S
ig

na
l

tr
ig

_s
b_

ou
t

Chapter 8 AutoCode Sim Cdelay Scheduler

AutoCode Reference 8-16 ni.com

At the template level, the default Sim with Cdelay ATR triggered task
behavior of re-queueing a task for execution on receipt of a new trigger
before the outputs have been posted can be turned off by replacing
the segment call Sim_style_ATR_Idle by a call to
NoRetrigger_style_ATR_Idle. To turn off the Sim with Cdelay
global timeline enable policy, replacing it with the default sync
immediate on enable policy, you must replace the calls to the segments
Sim_style_Enable_Idle and Sim_style_Enable_Blocked with
calls to the segments Fast_style_Enable_Idle and
Fast_style_Enable_Blocked, respectively.

Figure 8-9. Alternative (Old Enable Policy) STD for an Enabled Task

Shortcomings of the Sim Cdelay Scheduler
What the pipeline re-configuration did in the new scheduler was to
purchase low latency at the price of scheduler overhead. However, the
solution is not complete; given a chain of ANC tasks—that is, the output of
an ANT triggered block is the trigger of another ANT triggered block—the
new scheduler would not fire off all elements of the chain in a single cycle
as an ideal scheduler would. Instead, it would only catch the first element
of the chain; each additional element would suffer a cycle of scheduler
latency. To solve this problem, it would suffice to enclose the queue task
and the second post outputs stage of the new scheduler in a relaxation loop

IDLE RUNNING

BLOCKED

task
done

Timer is zero and
enable, reset timer
and post outputs

Timer has reached
zero, signal overflow

Enable,
reset timer

Timer is greater
than zero,
decrement it

Timer is zero and
!enable, post
outputs

Chapter 8 AutoCode Sim Cdelay Scheduler

© National Instruments Corporation 8-17 AutoCode Reference

that repeated until no new tasks where queued for execution. Given such an
implementation, the chained ANC problem would disappear. However,
under such a design, scheduler execution time would be variable and data
dependent—undesirable attributes in any hard real-time scheduler.
Contrast this with the new scheduler, which catches the first element of an
ANC chain but has a fixed-length pipeline. An evaluation of the trade-offs
between the relaxation approach and the fixed pipeline approach must be
done before such potentially dangerous changes are made to any scheduler.

© National Instruments Corporation 9-1 AutoCode Reference

9
Global Scope Signals and
Parameterless Procedures

This chapter discusses global scope signals and parameterless procedures.

Introduction
The memory and performance requirements of real-time production code
force the issue of global variables. AutoCode does not generally use global
variables; rather, it creates and uses stack variables and explicit interfaces.
Whereas that architecture is perfectly sound, it does cause overhead in a
production system. Therefore, AutoCode now supports direct use of global
variables for local block outputs within a subsystem. Extending that
concept allows global variable(s) to be used as the inputs and outputs of a
procedure.

You must explicitly select which signals within the model will be generated
as global variables. In addition, you also will have to specify which of the
procedure inputs and outputs are to be global. Fortunately, you are able to
specify these signals within the SuperBlock Editor. A summary of the
capabilities regarding these global signals includes:

• Model-level specification of global signals

• Specification of a memory address that can be attached to each global
signal

• Specification of which procedure inputs and/or outputs are to be global
variables

• Verification of connectivity during Analyze-time

• Access to global variable names from within the template, allowing
customized locality of the declarations

• Command-line override to force all signals to be global or not global

• DocumentIt support

Chapter 9 Global Scope Signals and Parameterless Procedures

AutoCode Reference 9-2 ni.com

These new features address the following two uses:

• Data Monitoring/Injection—The safe access to local subsystem
signals for the purpose of monitoring the signal’s value during the
execution of the model. This is intended as a way to provide
debugging/monitoring information.

• Parameterless Procedure—The ability to use global variable(s) to
represent a procedure’s inputs and/or outputs. This involves a clear
specification of the names of those global variables for both the
procedure and the caller.

Data Monitoring/Injection
Data monitoring is the ability to have read-only access signals within a
subsystem from outside the subsystem by some external agent outside the
scope of the SystemBuild model. Data injection is the ability to modify
signals within a subsystem from outside the subsystem by some external
agent outside of the SystemBuild model. This is usually performed in a
testing environment to determine the effect of extraordinary events on the
system being tested. Both data monitoring and data injection require that
the automatic variables that are normally used for local blocks outputs
instead be global variables. When the block outputs are global variables,
the values persist after the subsystem exits for that time-cycle. Because the
AutoCode requirements for monitoring and injection are identical, the
remainder of this section will discuss the monitoring case.

You can monitor almost every signal from a basic block within a
subsystem. AutoCode will ensure that the naming of these global variables
used for monitoring are unique across the whole model. Any conflicts will
be automatically resolved by mangling the variable name.

Specifying Monitored Signals
A monitored signal is generated as a safe global variable. A safe global
variable will generate as a unique variable, regardless of the signal’s
name/label and whether it matches another block’s signal name/label.

Within the SuperBlock Editor, you have the choice of specifying which
outputs of a basic block will be monitored. Each signal has an attribute
named Output Scope. This scope attribute indicates whether or not the
signal is to be a local (automatic) variable or a global variable. In addition,
when the signal has a Global Scope, you can enter a memory address. This
is just a string—31 characters maximum—that can be used to represent the

Chapter 9 Global Scope Signals and Parameterless Procedures

© National Instruments Corporation 9-3 AutoCode Reference

memory address, and that string is accessible through template tokens
during code generation.

Note Be careful when selecting only a partial subset of block outputs as Global Scope
when generating vectorized code. NI recommends that if you intend for some of the block’s
output to be global, you make them all global so as to preserve loops within the generated
code.

Generating Code for Monitored Signals
The only difference between the code when using Global Scope signals
will be the declarations of the variables used for the local block outputs.
AutoCode provides the following set of TPL tokens to allow you to
customize the declaration of these variables. Since monitored signals are
not intended to be shared between subsystems, the global variables used to
represent monitored signals are grouped by subsystem. For more
information about these tokens, refer to the Template Programming
Language User Guide.

The default template uses the following tokens to declare the variables. The
visibility of the global variable declarations must include the subsystem for
which they are intended.

gtype_nmembers_i gtype_b

gtype_members_ls gtype_members_size_li

gtype_members_typ_pfix_ls gtype_members_typ_li

gtype_members_memaddr_ls gtype_blk_list_li

gtype_blk_channel_list_li

Note You must write template code to customize the declarations of these variables.
That includes usage of the Memory Address string, as this is target/compiler specific
information.

Chapter 9 Global Scope Signals and Parameterless Procedures

AutoCode Reference 9-4 ni.com

Limitations
This section identifies some of the limitations of scoped output.

Unsupported Blocks
The following list presents the blocks that do not support scoped outputs.

• Blocks that are not supported by AutoCode

• Write-to Variable Block

• DataStore

• Any block that can never have outputs, such as Text Block and
Sequencer

Connection to External Output
It is possible to connect a Global Scope output to a subsystem/system
external output pin. A Global Scope output cannot be used to implicitly
communicate between subsystems and/or the system output. If you connect
your model this way, there will be a copy from the global variable into the
external output structure for that system/subsystem. That copy occurs at the
end of the subsystem execution order.

Variable Block Aliasing
You cannot name a Global Scope label or name that matches the name of
the variable block or %var variable. AutoCode will mangle the name of the
Global Scope signal in that situation.

Monitored Signals within a Procedure SuperBlock
The implementation of monitoring signals uses global variables. That
means there is only one set of global variables for each use of the
procedure. By definition, that means that procedures that use monitored
signals are no longer re-entrant.

Monitoring Procedure External Outputs
The external outputs of a Procedure SuperBlock cannot be safely
monitored. The reason is that the concept of monitoring is in conflict with
the parameterless procedure feature. Therefore, external outputs of a
procedure cannot use a safe global variable and must be considered a part
of a parameterless interface to that procedure.

Chapter 9 Global Scope Signals and Parameterless Procedures

© National Instruments Corporation 9-5 AutoCode Reference

Parameterless Procedure
A parameterless (argument-less) procedure is a procedure that uses global
variable(s) to pass input(s) into and/or output(s) out of the procedure. Each
input and output can be individually selected to be global or not.

Note A parameterless procedure is purely a performance optimization that requires you to
make design changes in your model to get the correct code. Carefully consider using this
type of procedure, as it requires significant effort to design your model correctly without
the safety net of AutoCode managing the generated variables. National Instruments
recommends that only advanced users of SystemBuild and AutoCode use this feature.

Specifying Parameterless Procedure Interface
Each of the inputs and outputs of a procedure can be specified with a scope.
This scope indicates that the signal is to use a global variable or not.
Unfortunately, it is not enough just to specify the interface. The source of
the procedure’s inputs—that is, the blocks whose output(s) connect to the
procedure’s inputs—must know the exact name(s) of the global variables
so as to pass the data correctly. The goal is to eliminate any extra copies of
the data when a procedure is called, and that requires the use of unsafe
global variables.

An unsafe global variable is a global variable that might have
multiple-writers and might require an implicit execution order to provide
the correct value for a particular usage.

Caution The Analyzer and AutoCode are unable to detect sequencing flaws in a model that
uses parameterless procedure signals. The result might be non-deterministic behavior of
your model.

Input Specification
The specification of procedure inputs is done within the Procedure
SuperBlock definition. Like basic block outputs, each input channel has an
attribute called Input Scope. A Local Scope for an input indicates that
channel will be passed to the procedure within the procedure’s input (U)
structure or passed on the stack (-nouy). A Global Scope indicates that the
signal is intended to be a global variable. As such, the exact name of the
global variable must be specified as the procedure’s Input Name for that
signal. You cannot use a Global Scope Input signal without specifying an
input name for that signal.

Chapter 9 Global Scope Signals and Parameterless Procedures

AutoCode Reference 9-6 ni.com

Note NI suggests that you adopt a naming convention for all of your global variables used
for parameterless procedure signals. For example, specify all of the names with a leading
“g,” like gThrottleValue.

Output Specification
Procedure outputs are specified from the basic blocks that connect to the
external signal pins. Therefore, you must specify the global output of a
procedure at the basic block that is the source of the output signal. After the
basic block and channel is identified, select the channel’s Output Scope to
be Global and specify the exact name of the global variable to use within
the Output Label or Name field for that signal. Notice that the normal
Name/Label precedence for basic block outputs still applies. Again, a
naming convention for the global variables is recommended.

Using a Parameterless Procedure
After the procedure has been defined with parameterless signals, you now
have to connect signals to and from the procedure reference. The following
sections describe the connections of a parameterless signal.

Global-to-Global Input Connection
The global-to-global input connection is the most optimal usage of the
parameterless procedure interface. This form indicates that the source of
the input directly uses the global variable used for the procedure’s
parameterless signal. Therefore, you must match the global variable(s)
properly to connect to a parameterless procedure. The Analyzer will verify
that the global variable names match.

Note You must indicate within the source block the signal connected to the procedure to
be Global Scope and specify the same name for its global variable as the global variable
specified for the procedure’s Input Name.

Global Output Connection
You can use a global output of the procedure like any basic block with a
Global Scope Output, but you cannot change the Scope of the signal at the
procedure reference.

Chapter 9 Global Scope Signals and Parameterless Procedures

© National Instruments Corporation 9-7 AutoCode Reference

Condition Block Code Generation
The Condition Block supports the use of parameterless procedures. In the
nodefault and sequential modes, the Condition Block will not buffer the
global outputs of the procedure into the R_P (real parameter) array. For
information about Condition Blocks, refer to the Condition Block section
of Chapter 5, Generated Code Architecture.

Reusing a Parameterless Procedure
A parameterless procedure is a procedure that uses a set of global variables
as its interface rather then a formal argument list. Therefore, you can
reuse—that is, use the procedure in more than one place—but you must
make sure that source blocks for the Global Scope inputs use the correct
global variable. When you reuse a parameterless procedure, there now are
multiple writers to the same global variable and, therefore, the sequencing
of the blocks can unexpectedly affect the value of the global variable.

Note If you intend to reuse a parameterless procedure, make sure that the sequencing of
the blocks that write into the global variables is correct. Also, keep in mind the same
problem with using the global outputs of the procedure as well.

Generating Code for Parameterless Procedures
The only difference between the code of a parameterless procedure and one
that does not use this feature is that not all of the inputs and outputs of the
procedure will be formal arguments of the procedure. Global variables are
generated when referring to a procedure’s inputs and/or outputs. As global
variables used for a parameterless procedure require visibility over all
subsystems and procedures, these variables are associated with the whole
model. The set of TPL tokens to access this information is therefore within
the SYSTEM scope. Refer to the Template Programming Language User
Guide for more information about these tokens.

The default template uses the following tokens to declare the variables.

sgtype_nmembers_i sgtype_b

sgtype_members_ls sgtype_members_size_li

sgtype_members_typ_pfix_ls sgtype_members_typ_li

sgtype_members_memaddr_ls sgtype_blk_channel_list_li

sgtype_blk_list_li sgtype_blk_list_idx_li

Chapter 9 Global Scope Signals and Parameterless Procedures

AutoCode Reference 9-8 ni.com

Note You must write template code to customize the declarations of these variables,
which includes usage of the Memory Address string because this is target/compiler specific
information.

Issues and Limitations
This section identifies some other items that you should be aware of if you
intend to use parameterless procedures.

Note Parameterless procedures require the use of global variables. All of the deterministic
safety measures normally used by AutoCode are disabled for these signals. As a result, you
can easily create models that exhibit non-deterministic behavior. Issues such as block
sequencing and selection of variables are now your responsibility.

Communication Between Subsystems
You cannot use a Global Scope signal to bypass the subsystem interface. A
copy will be required to pass the data between subsystems. If you want to
pass data between subsystems using global variables, use a variable block.

Variable Blocks Versus Global Scope
A Variable Block cannot be used as a Global Scope signal into a
parameterless procedure. The reason for this is that you would be implicitly
writing to that variable block when the procedure is reused. You should
contain the Variable Block within the procedure rather than passing it into
the procedure. In addition, the SystemBuild Simulator would be unable to
simulate the aliasing effect of the Variable Block and the Global Scope
signal.

SystemBuild Simulator
The SystemBuild Simulator ignores the Output and Input Scope attributes.
Therefore, the subtle effects of the global variables are not simulated and
can mask those effects, thus misleading you to believe your model is
correct while global variables in the generated code are being overwritten
and corrupting the results of your model. If you correctly use the global
variables by proper sequencing and selection, the Simulation should match
the generated code. However, it could also be a coincidence, and there is no
direct way to tell the difference.

Chapter 9 Global Scope Signals and Parameterless Procedures

© National Instruments Corporation 9-9 AutoCode Reference

Connection to External Output
If a signal that is used as input to a Global Scope procedure input or a
Global Scope procedure output is connected to a external output pin,
be aware that the external output pins will be updated at the end of that
subsystem during the subsystem copy-back phase. Thus, if you reuse the
Global variable representing that signal, by reusing the procedure, you will
see the last value of that global signal for each of its external output
connections. In this case, NI recommends copying the global variable after
each use through a gain block and connect that block output to the external
output pin.

Recommendations
NI recommends applying the following steps to your design if you intend
to use parameterless procedures. Notice that many of these items have
direct parallels to what you would expect if you were hand-coding using
global variables.

Naming Convention
Adopt a model-wide naming convention for the global variables used for
passing data into and out of the parameterless procedure. You might want
one style for inputs and another for outputs.

Model Documentation
Use the Text Block extensively to document both the procedure definition
and each procedure reference. This will help indicate what the expectation
is for the procedure. Concentrate on describing the interface of the
procedure as well as sequencing assumptions.

Explicit Sequencing
As an added safety measure, you might want to use the Sequencer Block to
insure the proper ordering of blocks that affect global variables. This is
critical when you are reusing a parameterless procedure or even the global
variable itself.

Chapter 9 Global Scope Signals and Parameterless Procedures

AutoCode Reference 9-10 ni.com

Analyzer and AutoCode Warnings
The Analyzer reports questionable connectivities or situations regarding
usage of the Global Scope signals. Also, AutoCode might report additional
warnings during code generation. Evaluate these warnings and verify that
the generated code is what you expect. You might need to change your
model to fix the situation.

Changing Scope Class
To properly match Global Scope signals for parameterless procedures,
you might need to use an explicit copy to resolve the naming. This is
accomplished by using a unit-gain block—that is, a gain block with a gain
factor of 1. Using the gain block in this way will let you match any
connectivity that you require. You might want to use a custom icon for this
usage of the gain block to provide a better graphical representation of the
copy instead of a gain.

Command Options
The following command options force the scope of block outputs:

• -nogscope—This option forces all Output Scopes to be Local for all
block outputs. Connection to a Input Scope that is Global results in a
copy into the global variable before the procedure call.

• -allgscope—This option forces all Output Scopes to be Global for
all block outputs while Input Scopes are forced to Local, thus disabling
parameterless procedures.

© National Instruments Corporation A-1 AutoCode Reference

A
Technical Support and
Professional Services

Visit the following sections of the National Instruments Web site at
ni.com for technical support and professional services:

• Support—Online technical support resources at ni.com/support
include the following:

– Self-Help Resources—For immediate answers and solutions,
visit the award-winning National Instruments Web site for
software drivers and updates, a searchable KnowledgeBase,
product manuals, step-by-step troubleshooting wizards, thousands
of example programs, tutorials, application notes, instrument
drivers, and so on.

– Free Technical Support—All registered users receive free Basic
Service, which includes access to hundreds of Application
Engineers worldwide in the NI Developer Exchange at
ni.com/exchange. National Instruments Application Engineers
make sure every question receives an answer.

• Training and Certification—Visit ni.com/training for
self-paced training, eLearning virtual classrooms, interactive CDs,
and Certification program information. You also can register for
instructor-led, hands-on courses at locations around the world.

• System Integration—If you have time constraints, limited in-house
technical resources, or other project challenges, NI Alliance Program
members can help. To learn more, call your local NI office or visit
ni.com/alliance.

If you searched ni.com and could not find the answers you need, contact
your local office or NI corporate headquarters. Phone numbers for our
worldwide offices are listed at the front of this manual. You also can visit
the Worldwide Offices section of ni.com/niglobal to access the branch
office Web sites, which provide up-to-date contact information, support
phone numbers, email addresses, and current events.

© National Instruments Corporation I-1 AutoCode Reference

Index

A
add and subtract macros, 2-40
arguments

UCB-Ada fixed calling, 3-12
UCB-C fixed calling, 2-13

arithmetic macros, 2-35
array

iinfo, 5-17
IP, 5-16, 5-17
R_P for vectorized code, 6-4
rinfo, 5-17
RP, 5-16, 5-17
subscripts

vectorized code, 6-4
asynchronous procedures. See generated code

architecture, asynchronous procedures
AutoCode, fixed-point. See fixed-point
autostar command, 3-16

B
bitwise functions, 3-26
block state

state data, 5-9
BlockScript block. See generated code

architecture, BlockScript block
BOOLEAN data type, 2-4, 3-5
BREAK Block, 5-40

C
C fixed-point arithmetic. See fixed-point, C
caller-id, 5-18
calling UCBs, 3-12
callouts

global variable block, 5-51
non-shared global variable blocks

critical section with epi option, 5-52
critical section without epi option, 5-51

non-shared variable blocks, 5-51
pairs, 5-51
parameterized UCB, 5-38
shared global variable blocks, 5-53

critical section with epi option, 5-54
critical section without epi option, 5-53

shared memory, 5-50
read, 5-50
write, 5-50

shared memory fixed-point callouts
Ada, 5-47
C, 5-46

variable blocks, 5-19
requirements, 5-49
shared variable block support, 5-47
template code, 5-48

code generation
scalar, 6-1

example code for gain block, 6-2
signal connectivity, 6-5
unrolled code, 6-5
vectorized, 6-1

array subscripts, 6-4
benefits, 6-1
example code for gain block, 6-3
maximal vectorized code generation for

example SystemBuild model, 6-9
mixed vectorized code generation for

example SystemBuild model, 6-12
requirements for, 6-4
vector labels, 6-8

code, example
gain block

scalar code, 6-2
vectorized code, 6-3

Index

AutoCode Reference I-2 ni.com

compile_ada_sa.sh compilation script, 3-11
compile_c_sa.sh compilation script, 2-11
compiling, 2-1
condition block. See generated code

architecture, condition code
Condition SuperBlock, 9-7
conditions and actions, 5-23
configuration file. See RTOS, configuration

file
CONTINUE Block, 5-40
continuous subsystems. See subsystems,

continuous
conventions used in the manual, iv
conversion macros, 2-35
critical section

with epi option, 5-52, 5-54
without epi option, 5-51, 5-53

custom algorithm, 5-22

D
Data Dictionary, 5-23
data types, 3-5

Ada, 3-5
RT_BOOLEAN, 3-5
RT_FLOAT, 3-5
RT_INTEGER, 3-5

C, 2-4
RT_BOOLEAN, 2-4
RT_FLOAT, 2-4
RT_INTEGER, 2-4

-DHP, 2-2
-DHP700, 2-2
diagnostic tools (NI resources), A-1
-DIBM, 2-2
directory

demos, 2-3, 3-4
executables, 2-2, 3-3
src distribution (C), 2-2
templates, 2-3, 3-4

top-level, 2-2, 3-3
utilities, 2-2, 3-3

-DMSWIN32, 2-2
documentation

conventions used in the manual, iv
NI resources, A-1

-DOSF1, 2-2
drivers (NI resources), A-1
-DSGI, 2-2
-DSOLARIS, 2-1, 2-2

E
epi option, 5-18, 5-52, 5-54
ERR_NUM variable, 3-7
error handling, 5-11
ERROR_FLAG variable, 2-8
errors

error utility (Ada), 3-7
math error, 3-7
messages

time overflow, 2-8
stop block, 3-7
time overflow, 3-8
unexpected error, 3-8
unknown error, 3-8
user code error, 3-7

examples (NI resources), A-1
extended procedure information, 5-18
external_input utility

Ada, 3-10
C, 2-10

external_output utility
Ada, 3-11
C, 2-10

F
files

.c (C source), 2-2

.h (header), 2-2

Index

© National Instruments Corporation I-3 AutoCode Reference

_.a extension (Ada), 3-3
compile_ada_sa.sh, 3-11
compile_c_sa.sh, 2-11
sa_defn.a, 3-4
sa_defn.h, 2-3, 2-4
sa_defn_.a, 3-5
sa_fmath.a, 3-4
sa_fmath_.a, 3-4, 3-5
sa_fuzzy.a, 3-4
sa_fuzzy.h, 2-4
sa_fuzzy_.a, 3-4
sa_fx.h, 2-32
sa_fx_externs.c, 2-33, 2-34
sa_fx_f.c, 2-34
sa_fx_f.h, 2-33
sa_fxadd_byte.c, 2-32, 2-33
sa_fxadd_long.c, 2-32, 2-33
sa_fxadd_short.c, 2-32, 2-33
sa_fxdiv_byte.c, 2-34
sa_fxdiv_long.c, 2-32, 2-34
sa_fxdiv_short.c, 2-34
sa_fxlimit.h, 2-32, 2-33
sa_fxm.h, 2-32, 2-33
sa_fxm_f.c, 2-34
sa_fxm_f.h, 2-33
sa_fxmp.h, 2-32, 2-33
sa_fxmp_f.h, 2-33
sa_fxmul_byte.c, 2-34
sa_fxmul_long., 2-34
sa_fxmul_long.c, 2-32
sa_fxmul_short.c, 2-34
sa_fxp.h, 2-32, 2-33
sa_fxp_f.c, 2-34
sa_fxp_f.h, 2-33
sa_fxpbit.a, 3-21
sa_fxpbit_.a, 3-21
sa_fxpgenerics.a, 3-21
sa_fxpgenerics_.a, 3-21
sa_fxprv.h, 2-32, 2-33
sa_fxptypes_.a, 3-21

sa_fxr.h, 2-32, 2-33
sa_fxscale.h, 2-32, 2-33
sa_fxsub_byte.c, 2-34
sa_fxsub_byte.c file, 2-32
sa_fxsub_long.c, 2-32, 2-34
sa_fxsub_short.c, 2-32, 2-34
sa_fxtemps.h, 2-32, 2-33
sa_intgr.h, 2-4
sa_io.a, 3-4
sa_math.a, 3-4
sa_math.h, 2-4
sa_math_.a, 3-4, 3-5
sa_sys.h, 2-3, 2-4
sa_time.a, 3-4
sa_time.h, 2-3, 2-4
sa_time_.a, 3-4, 3-5
sa_types.h, 2-4, 2-32, 2-33
sa_types_.a, 3-4, 3-5
sa_types_.ada, 3-5
sa_user.a, 3-5
sa_user.c, 2-11
sa_user.h, 2-3, 2-4
sa_user_.a, 3-4, 3-11
sa_utils.a, 3-4
sa_utils.c, 2-3, 2-5, 2-6
sa_utils.h, 2-3, 2-4
sa_utils_.a, 3-4, 3-5
sa_utils_.ada, 3-4
utilities

sa_utils.ada, 3-6
stand-alone

Ada, 3-4
C, 2-3

fixed-point
Ada, 3-16

32-bit division, 3-31
32-bit multiplication, 3-31
addition function, 3-29
ambiguous selection of overloaded

operators, 3-37
architecture, 3-16

Index

AutoCode Reference I-4 ni.com

bitwise functions, 3-26
comparing to sim results, 3-35
compilation example, 3-21
compiler problems, 3-35
conversion functions, 3-27, 3-31
creating instances of functions, 3-17
data types, 3-17
division function, 3-31
explicit rounding conversion, 3-32
files in the src directory, 3-21
fixed-point data types, 3-23
fixed-point variables, 3-19
floating-point textual

representation, 3-36
for multiprocessor, 5-45
generating instantiations, 3-33
generic functions, 3-17, 3-24
intermediate results, 3-30
language-defined conversion, 3-32
multiplication function, 3-31
no-op conversion function, 3-36
overflow protection, 3-20
overloaded operators, 3-17, 3-26
package dependencies, 3-18
rounding and truncating, 3-35
shared memory callouts, 5-47
subtraction function, 3-29
system scope operators and

conversions, 3-34
templates, supplied, 3-2
truncation conversion, 3-32
user types, 3-19
UTs, 3-19
wordsize extension, 3-30

C, 2-26, 2-40
32-bit division, 2-43
32-bit multiplication, 2-42
32-bit operands, 2-42
arithmetic macros, 2-38
conversion macros, 2-35

example without wordsize
extension, 2-41

files in src directory, 2-31
fixed-point variables, 2-28
fixed-point, data types, 2-28
for multiprocessor, 5-45
function interface, 2-27
implementation of fixed-point

arithmetic, 2-26
intermediate results, 2-45
macro interface, 2-27
matching sim results, 2-45
order dependency, 2-45
overflow protection, 2-31
relational macros, 2-44
required interface files, 2-27
shared memory callouts, 5-46
user types, 2-30
UTs, 2-30
wordsize extension, 2-40

selecting, 2-42
FLOAT data type, 2-4, 3-5
function interface, 2-27

files needed, 2-27

G
generated code

context, 1-3
errors in, 2-8
linking with sa files, 2-6
matching sim results, 2-45
optimizing

conditions that prevent optimization,
7-4, 7-8

general information, 7-19
maximally reusing temporary block

outputs, 7-11
merging initialization sections

(Oinitmerge option), 7-8
Ogvarblk option, 7-4

Index

© National Instruments Corporation I-5 AutoCode Reference

Olvarblk option, 7-4
Onorestart option, 7-5
propagating constants (Opc

option), 7-13
removing restart capability, 7-5
reusing temporary block

outputs, 7-11
reusing temporary block outputs as

specified, 7-11
variable block optimization, 7-1
vbco option, 7-4

real-time operating system, 4-1
See also RTOS

structure, 1-3
vectorized

BlockScript block, 6-27
copy-back, 6-21
eliminating copy-back, 6-23
example of Ada generated code, 6-25
example of multiple arays within a

block, 6-15
maximal vectorization, 6-7
merge, 6-19
mixed vectorization, 6-7
split vector, 6-17
split-merge problems, 6-17
standard procedure interface, 6-23
Y-structure, 6-21

generated code architecture
asynchronous procedures

background procedure, 5-21
interrupt event, 5-21
start-up procedure, 5-21

AutoCode handling of global variable
blocks, 5-3

BlockScript block
environment variables, 5-24
example with parameter, 5-34
example with states, 5-27, 5-30, 5-31
generated code optimizations, 5-35

constant propagation, 5-35

dead code elimination, 5-35
implicit type conversion, 5-36
special directives, 5-36

inputs, 5-23
local variables, 5-24
outputs, 5-23
parameters, 5-33
phases, 5-25, 5-26

example of, 5-26
purpose
states

continuous subsystem, 5-29
discrete subsystem, 5-26

BREAK Block, 5-40
caller_id, 5-18, 5-19
condition code

default mode
no default mode, 5-22
sequential mode, 5-22

CONTINUE Block, 5-40
epi option, 5-19
global storage, 5-3

use of %vars, 5-3
global variable blocks, 5-41
IfThenElse Block, 5-39
interface layers

diagram, 5-7
discrete subsystem, 5-8
scheduler external, 5-7
Sys_ExtIn, 5-7
Sys_ExtOut, 5-7
system external, 5-7
U-structure (inputs), 5-8
Y-structure (outputs), 5-8

limitations of generated code, 5-42
local variable blocks, 5-40, 5-41
Macro Procedure SuperBlocks, 5-20

interface to generated code, 5-20
mixing procedures generated with epi and

without epi, 5-19
multi-processor code generation, 5-43

Index

AutoCode Reference I-6 ni.com

distributed memory
architecture, 5-44

mapping command options, 5-45
shared memory

architecture, 5-43
callouts, 5-44

optimization for read-from variable
blocks, 5-4

Sequencer Block, 5-41
similarities to compiler, 5-1
single-rate system, 5-8
software constructs, 5-39
subsystems. See subsystems
symbolic names

default, 5-1
generation of by AutoCode, 5-2

UCB. See UCB
variable block sequencing, 5-3
WHILE Block, 5-39

generating reusable procedures, 3-14
global variable blocks, 5-41

callouts, 5-51
global variables

as local block outputs, 9-1
as procedure input/output, 9-1
data monitoring, 9-2

code generation, 9-3
limitations, 9-4
specifying monitored signals, 9-2

graphical user interface, 3-16

H
handling %vars in a standard procedure, 5-12
hard-subscript, 5-29
header files, 2-4

sa_defn.h, 2-4
sa_fuzzy.h, 2-4
sa_math.h, 2-4
sa_sys.h, 2-4
sa_time.h, 2-4

sa_types.h, 2-4
sa_user.h, 2-4
sa_utils.h, 2-4

help system, 1-3
help, technical support, A-1
high-level language, code, 1-2, 3-16

I
I_P, 5-9

UCB fixed call argument
Ada, 3-13
C, 2-13

identification, caller, 5-18
IfThenElse block, 5-39
iinfo array, 5-9, 5-17
implementation_initialize utility

Ada, 3-8
C, 2-9

implementation_terminate utility
Ada, 3-10
C, 2-9

INFO (UCB fixed call argument)
Ada, 3-12
C, 2-13

instrument drivers (NI resources), A-1
INTEGER data type, 2-4, 3-5
Invoking Procedures

Using Generated Subsystem
Function, 2-25

Using Generated UCB Wrapper
Function, 2-24

IP array, 5-17

K
KnowledgeBase, A-1

Index

© National Instruments Corporation I-7 AutoCode Reference

L
local variable blocks, 5-40, 5-41
local variables, 5-27

M
macro interface, 2-27

files needed, 2-27
Macro Procedure SuperBlocks. See generated

code architecture, Macro Procedure
SuperBlocks

MATH_LIB (Ada), 3-5
MatrixInverse, 7-17
MatrixLeftDivide, 7-17
MatrixRightDivide, 7-17

N
National Instruments support and

services, A-1
NIP (UCB variable interface argument)

Ada, 3-13
NRP (UCB variable interface argument)

Ada, 3-12
NU (UCB fixed call argument)

Ada, 3-12
C, 2-13

NX (UCB fixed call argument)
Ada, 3-12
C, 2-13

NY (UCB fixed call argument)
Ada, 3-12
C, 2-13

O
online help, 1-3
optimizing code. See generated code,

optimizing
options, vbco, 5-49
organization, manual, 1-1

output posting, 8-2
overflow error message, 2-8

P
parameterized UCB callouts, 5-38
parameterless procedures. See procedures,

parameterless
platforms

code for, 2-1
compiling on, 2-1
preprocessors, 2-2

platform-specific code, 2-1
procedure data, 5-10
procedure SuperBlocks, 2-20
procedures

ordering, 5-18
parameterless, 9-1

allgscope option, 9-10
code generation for, 9-7
command line options for

controlling, 9-10
global connections, 9-6
input specification, 9-5
limitations, 9-8
nogscope option, 9-10
output specification, 9-6
problem with SystemBuild

simulator, 9-8
recommendations to avoid

problems, 9-9
removal of safety measures for

variables, 9-8
reusing, 9-7
unsafe global variables, 9-5
use of global variables, 9-5

programming examples (NI resources), A-1

Index

AutoCode Reference I-8 ni.com

R
R_P, 5-9

UCB fixed call argument, Ada, 3-12
rapid prototyping, 1-2
real-time code

generating, 3-16
real-time file, 3-16
related publications, 1-4
reusable procedures

example, 2-22
generated subsystem function, 2-25
generated UCB wrapper function, 2-24
generating, 3-14
linking, 2-15, 2-17, 2-21, 2-22

(Ada), with user real-time
applications or simulator, 3-14

(C), with user real-time applications
or simulator, 2-22

with SystemBuild simulator, 2-20
reusable procedures, diagram of linking, 2-15
rinfo array, 5-17
rolled loop, 5-29
RP (UCB fixed call argument)

C, 2-13
RP array, 5-17
RT_BOOLEAN, 2-4, 3-5
RT_DURATION variable, 2-3
RT_FIXED_OPERATORS package,

3-17, 3-26
example, 3-28

RT_FLOAT, 2-4, 3-5
RT_INTEGER, 2-4, 3-5
rtf, 3-16
RTOS, 4-1

configuration file, 1-2, 4-1
attributes, 4-2
background procedure SuperBlock

table, 4-6
command options, 4-8
contents, 4-3

interrupt procedure SuperBlock
table, 4-5

processor IP name table, 4-7
processors table, 4-3
-rtos command option, 4-8
-rtosf command option, 4-8
scheduler priority table, 4-4
startup procedure SuperBlock

table, 4-7
subsystem table, 4-4
table syntax, 4-2
using, 4-8
version table, 4-8

S
sa_aiq.a file, 3-4
sa_aiq_.a file, 3-4
sa_defn.a file, 3-4
sa_defn.h

sa_intgr.h, 2-4
sa_defn.h file, 2-3, 2-4
sa_defn_.a file, 3-5
sa_exprt.a file, 3-4
sa_exprt_.a file, 3-4
SA_FIXED_BITWISE_FUNCTIONS

package, 3-26
SA_FIXED_GENERICS package, 3-23
sa_fmath.a file, 3-4
sa_fmath_.a file, 3-4, 3-5
sa_fuzzy.a file, 3-4
sa_fuzzy.h file, 2-4
sa_fuzzy_.a file, 3-4
sa_fx.h file, 2-32
sa_fx_externs.c file, 2-33, 2-34
sa_fx_f.c file, 2-34
sa_fx_f.h file, 2-33
sa_fxadd_byte.c file, 2-32, 2-33
sa_fxadd_long.c file, 2-32, 2-33
sa_fxadd_short.c file, 2-32, 2-33
sa_fxdiv_byte.c file, 2-34

Index

© National Instruments Corporation I-9 AutoCode Reference

sa_fxdiv_long.c file, 2-32, 2-34
sa_fxdiv_short.c file, 2-34
sa_fxlimit.h file, 2-32, 2-33
sa_fxm.h file, 2-32, 2-33
sa_fxm_f.c file, 2-34
sa_fxm_f.h file, 2-33
sa_fxmp.h file, 2-32, 2-33
sa_fxmp_f.h file, 2-33
sa_fxmul_byte.c file, 2-34
sa_fxmul_long.c file, 2-32, 2-34
sa_fxmul_short.c file, 2-34
sa_fxp.h file, 2-32, 2-33
sa_fxp_f.c file, 2-34
sa_fxp_f.h file, 2-33
sa_fxpbit.a file, 3-21
sa_fxpbit_.a file, 3-21
sa_fxpgenerics.a file, 3-21
sa_fxpgenerics_.a file, 3-21
sa_fxprv.h file, 2-32, 2-33
sa_fxptypes_.a file, 3-21
sa_fxr.h file, 2-32, 2-33
sa_fxscale.h file, 2-32, 2-33
sa_fxsub_byte.c file, 2-32, 2-34
sa_fxsub_long.c file, 2-32, 2-34
sa_fxsub_short.c file, 2-32, 2-34
sa_fxtemps.h file, 2-32, 2-33
sa_intgr.h file, 2-4
sa_io.a file, 3-4
sa_math.a file, 3-4
sa_math.h file, 2-4
sa_math_.a file, 3-4, 3-5
sa_sys.h file, 2-3, 2-4
sa_time.a file, 3-4
sa_time.h file, 2-3, 2-4
sa_time_.a file, 3-4, 3-5
sa_types.h file, 2-4, 2-32, 2-33
sa_types_.a file, 3-4, 3-5
sa_types_.ada file, 3-5
sa_user.a file, 3-5
sa_user.c file, 2-11

sa_user.h file, 2-3, 2-4
sa_user_.a file, 3-4, 3-11
sa_utils.a file, 3-4
sa_utils.ada file, 3-6
sa_utils.c file, 2-3, 2-5, 2-6
sa_utils.h file, 2-3, 2-4
sa_utils_.a file, 3-4, 3-5
sa_utils_.ada file, 3-4
sample and hold, 5-8
scheduler, Sim Cdelay

design goals, 8-9
enable policy, 8-9
enhancing performance, 8-15
implementing, 8-12

considerations, 8-12
priority of DataStore writes, 8-13

introduction, 8-1
latencies, 8-15
output posting, 8-2, 8-9

ANC, 8-2
ATR, 8-2
free-running, 8-2
triggered, 8-2

pipeline stages, 8-8
retriggering, 8-9
shortcomings, 8-16
STDs (state transition diagrams), 8-10
using, option switch for, 8-14

scheduler, standard
delays

reasons for delays
with enabled tasks, 8-7
with triggered subsystem, 8-6

example model, 8-3
managing datastores, 8-7
pipeline stages, 8-5

SCHEDULER_STATUS variable, 2-10
Sequencer Block, 5-41
shared memory

callouts, 5-50

Index

AutoCode Reference I-10 ni.com

fixed-point callouts
Ada, 5-47
C, 5-46

shared variable block support, 5-47
simulation, stand-alone, 2-1
soft-subscript, 5-29
software (NI resources), A-1
software constructs. See generated code

architecture, software constructs
stand-alone simulation, 2-1
stand-alone utility file, 2-3, 3-4
standard procedures. See SuperBlocks,

standard procedures
static (persistent) data, 5-9

initializing, 5-10
STATUS_RECORD, 2-4
Stop Block, 2-8
structure

info
with epi, 5-18
without epi, 5-18

subsystems
block ordering, 5-5
block state

state data, 5-9
continuous, 5-41

BlockScript block, 5-29
integration, 5-42
limitations of generated code, 5-42
phases, 5-42

copy-back (vectorized code), 5-10
creation by SystemBuild analyzer, 5-5
data monitoring, 9-2

code generation, 9-3
limitations, 9-4
specifying monitored signals, 9-2

discrete
BlockScript block, 5-26

error condition, 5-9
error handling, 5-11
handling duplicates, 5-10

iinfo array, 5-9
phase condition, 5-9
phases

init, 5-10
output, 5-10
state, 5-10

procedural interface
unrolled interface, 5-12

procedure data, 5-10
sample and hold, 5-8
single-rate system, 5-8
static (persistent) data, 5-9

initializing, 5-10
top-Level SuperBlock, 5-6
unrolled interface, 5-12

SuperBlocks
procedure, 2-20
standard procedures, 5-11

error handling, 5-12
handling %vars, 5-12
iinfo array, 5-17
info structure, 5-11
input arguments, 5-15
input structure, 5-11
name, u, 5-15, 5-16, 5-17
nested state arguments, 5-15
output arguments, 5-15
output structure, 5-11
phases, 5-12
rinfo array, 5-17
state arguments, 5-15

support, technical, A-1

T
T (UCB fixed call argument)

Ada, 3-12
C, 2-13

technical support, A-1
template code for variable block

structures, 5-48

Index

© National Instruments Corporation I-11 AutoCode Reference

timing overflow, 2-8
training and certification (NI resources), A-1
troubleshooting (NI resources), A-1

U
U (UCB fixed call argument)

Ada, 3-12
C, 2-13

UCB, 2-3, 2-20, 3-4
arguments C, 2-13
calling C, 2-13
categories of, 5-37
code for UCB call, 5-38
fixed call arguments, 2-13, 3-12

Ada, 3-12
general form of equations, 2-14, 3-13
info argument, 3-13
linking handwritten UCBs

with AutoCode applications, 2-11,
3-11

with SystemBuild, 2-16
linking UCBs, 3-13
linking with AutoCode (sa_user.c),

2-16, 2-17
linking with SystemBuild (usr01.c),

2-16, 2-17
purpose

unrolled interface, 5-12
unrolled loop, 5-29
UserCode Block (see UCB), 3-4
utility routines (Ada)

background, 3-6
disable, 3-6
enable, 3-6
error, 3-6
external_input, 3-6, 3-10
external_output, 3-7, 3-11
fatalerr, 3-6
implementation_initialize, 3-6, 3-8, 3-10
implementation_terminate, 3-6

rewriting, 3-6
signal_remote_dispatch, 3-7
target-specific, 3-6

utility routines (C), 2-5
background, 2-5, 2-6
disable, 2-5, 2-6
enable, 2-5, 2-6
error, 2-5, 2-7, 2-8
error detection and causes, 2-7
errors in the generated code, 2-8
external_input, 2-6, 2-10
external_output, 2-6, 2-10
fatalerr, 2-5, 2-7
implementation_initialize, 2-5, 2-9
implementation_terminate, 2-6, 2-9
rewriting, 2-5
Signal_Remote_Dispatch, 2-6

V
variable block

callouts, 5-19
requirements, 5-49
sequencing, 5-3

variables, 2-3, 2-8, 2-10, 3-7
block variables, 5-16

vbco option, 5-49
vectorized code. See code generation,

vectorized

W
Web resources, A-1
WHILE Block, 5-39
wordsize extension, 2-40, 3-30

X
X (UCB fixed call argument)

Ada, 3-12
C, 2-13

Index

AutoCode Reference I-12 ni.com

XD (UCB fixed call argument)
Ada, 3-12
C, 2-13

XINPUT array, 2-10
Xmath {matrixx,ascii}, 2-7
XOUTPUT array, 2-10

Y
Y (UCB fixed call argument)

Ada, 3-12
C, 2-13

	AutoCode Reference
	Support
	Worldwide Technical Support and Product Information
	National Instruments Corporate Headquarters
	Worldwide Offices

	Important Information
	Warranty
	Copyright
	Trademarks
	Patents
	WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

	Conventions
	Contents
	Chapter 1 Introduction
	Manual Organization
	General Information
	Configuration File
	Language-Specific Information
	Structure and Content of the Generated Code
	Using MATRIXx Help
	Additional Netscape Information

	Related Publications

	Chapter 2 C Language Reference
	Stand-Alone Simulation
	Compiling on Various Supported Platforms
	Table 2-1. Recognized C Preprocessor Defines for Supported Platforms

	Stand-Alone Library
	System-Specific Files
	Table 2-2. Distribution Directories and Files
	Table 2-3. Header Files

	Target-Specific Utilities
	Table 2-4. Target-Specific Utility Routines
	enable(), disable(), and background() Functions
	error() and fatalerr() Functions
	fatalerr(): Stand-Alone Utilities Detected Errors
	ERROR: Conditions Detected in the Generated Code
	Implementation_Initialize() Function
	Implementation_Terminate() Function
	External_Input () Function
	External_Output () Function

	UserCode Blocks
	Linking Handwritten UCBs with AutoCode Applications
	Figure 2-1. Example UserCode Function File (sa_user.c)
	Implementing Handwritten UCBs
	Table 2-5. UCB Calling Arguments and Data Types for the Fixed Interface
	Figure 2-2. Linking Handwritten UCBs with AutoCode Applications

	Linking Handwritten UCBs (for AutoCode) with SystemBuild
	Figure 2-3. Linking Handwritten UCBs with the SystemBuild Simulator

	Variable Interface UCB
	Interface Ordering
	Inputs and Outputs
	Function Prototype
	Linking a Variable Interface UCB with the Simulator

	Procedure SuperBlocks
	Generating Reusable Procedures
	Linking Procedures with the SystemBuild Simulator
	Figure 2-4. Linking Generated Reusable Procedures

	Linking Procedures with Real-Time Applications or Simulator
	Invoking Generated Procedures Directly
	Figure 2-5. Arguments to Generated Procedure proc
	Invoking Procedures Using Generated UCB Wrapper Function
	Invoking Procedures Using Generated Subsystem Function

	C Fixed-Point Arithmetic
	Fixed-Point AutoCode/C Implementation
	Generated Code with Fixed-Point Variables
	Fixed-Point Data Types
	Table 2-6. AutoCode/C Data Types

	User Types
	Overflow Protection
	Stand-Alone Files
	Macro Interface
	Function Interface
	Fixed-Point Conversion and Arithmetic Macros
	Conversion Macros
	Figure 2-6. AutoCode/C Conversion Macros for Fixed-to-Fixed Conversions
	Figure 2-7. AutoCode/C Conversion Macros for Fixed-to-Integer Conversions
	Figure 2-8. AutoCode/C Conversion Macros for Integer-to-Fixed Conversions
	Arithmetic Macros
	Figure 2-9. AutoCode/C Arithmetic Macros
	Table 2-7. Arithmetic Macros-Operand and Result Sizes
	Implementation of the Addition and Subtraction Macros
	Selecting Wordsize Extension in the Preprocessor Macro
	32-Bit Multiplication and Division Macros
	32-Bit Multiplication
	32-Bit Division
	16-Bit by 8-Bit Division
	32-Bit by 16-Bit Division

	Fixed-Point Relational Macros
	Figure 2-10. AutoCode/C Relational Macros

	Some Relevant Issues

	Chapter 3 Ada Language Reference
	Stand-Alone Simulation
	Supported Ada Compilers for the Stand-Alone Library
	Table 3-1. Identified Ada Run-Time Versions of the Stand-Alone Library

	Supplied Templates
	ada_rt.tpl Template
	ada_sim.tpl Template
	ada_fxpt_sys.tpl Template
	ada_fxpt_sub.tpl Template

	Stand-Alone Library
	System-Specific Files
	Table 3-2. Distribution Directories and Files
	Table 3-3. Target-Specific Utility Routines
	Data Types

	Target-Specific Utilities
	Table 3-4. Target-Specific Utility Routines
	Enable(), Disable(), and Background() Procedures
	Error Procedure() Procedure
	Implementation_Initialize() Procedure
	Implementation_Terminate() Procedure
	External_Input () Procedure
	External_Output() Procedure

	UserCode Blocks
	Linking Handwritten UCBs with AutoCode Applications
	Calling UCBs
	Table 3-5. UCB Calling Arguments and Data Types

	Procedure SuperBlocks
	Generating Reusable Procedures
	Linking Procedures with Real-Time Applications or Simulator

	Ada Fixed-Point Arithmetic
	How to Generate Real-Time Code
	Fixed-Point AutoCode/Ada Architecture
	Fixed-Point Data Types
	Generic Functions
	Instantiated Functions
	Package Dependencies
	Figure 3-1. Package Dependency Graph

	Generated Code with Fixed-Point Variables
	User Types
	System-Level Parameters to Generate User Types
	Table 3-6. System-Level Parameters to Generate User Types

	Overflow Protection
	Stand-Alone Files
	Table 3-7. Fixed-Point Stand-Alone Files

	Compilation Example
	Fixed-Point Type Declarations
	Table 3-8. Fixed-Point Data Type Summary

	Generic Functions
	Table 3-9. Generic Function Summary

	Bit-Wise Functions
	Instantiated Functions Package
	Operator Instantiations
	Conversion Function Instantiations
	Table 3-10. Conversion Function Naming Conventions
	Sample Package

	Addition and Subtraction Functions
	Multiplication and Division Functions
	32-Bit Multiplication
	32-Bit Division

	Conversion Functions
	Language-Defined Conversion
	Truncation Conversion
	Explicit Rounding Conversion

	Using System-Level Parameters to Generate Instantiations
	Using Subsystem-Level Parameters to Generate Instantiations
	System Scope Operators and Conversions

	Known Ada Compiler Problems
	Comparing Results to SystemBuild’s Simulator
	Table 3-11. Possible Midpoint Round Modes

	No-Op Conversion Function

	Chapter 4 Generating Code for Real-Time Operating Systems
	Real-Time Operating System Configuration File
	Configuration Items
	Table Syntax
	Table Naming Convention
	Table Column Contents
	Table Orderings
	File Comments

	RTOS Configuration File Contents
	Processors Table
	Table 4-1. Processors Table Contents
	Scheduler Priority Table
	Table 4-2. Scheduler Priority Table Contents
	Subsystem Table
	Table 4-3. Subsystem Table Contents
	Interrupt Procedure SuperBlock Table
	Table 4-4. Interrupt Table Contents
	Background Procedure SuperBlock Table
	Table 4-5. Background Table Contents
	Startup Procedure SuperBlock Table
	Table 4-6. Startup Table Contents
	Processor IP Name Table
	Table 4-7. Processor IP Table Contents
	Version Table
	Table 4-8. Version Table Contents

	Using the Configuration File

	Chapter 5 Generated Code Architecture
	Symbolic Name Creation
	Default Names
	Signal Naming
	Duplicate Names
	Selection of a Signal Name
	Subsystem and Procedure Boundaries

	Typecheck Feature and Data Types

	Global Storage
	Percent vars (%var)
	Global Variable Blocks
	Sequencing Variable Blocks
	Global Variable Block and %var Equivalence
	Optimization for Read-From Variable Blocks

	Global Scope Signal Capability

	Subsystems
	Discrete and Continuous SuperBlocks Versus Subsystems
	Top-Level SuperBlock

	Block Ordering
	Interface Layers
	Figure 5-1. Interface Layering Diagram

	Scheduler External Interface Layer
	System External Interface Layer
	Discrete Subsystem Interface Layer
	Single-Rate System
	Multi-Rate System
	Sample and Hold

	Static Data Within Subsystems
	iinfo
	R_P and I_P
	State Data
	Procedure Data

	Pre-init Phase
	Init, Output, and State Phases
	Copy Back and Duplicates
	Error Handling

	Standard Procedures
	Structure-Based Interface
	Unrolled Interface
	Phases and Error Handling
	Referenced Percent Variables
	Procedure Arguments
	U, Y, S, and I
	Table 5-1. Description of Element iinfo in Structure _procedure name_info
	Table 5-2. Description of Element rinfo in Structure _procedure name_info

	Extended Procedure Information Structure
	Caller Identification
	Table 5-3. Procedure Ordering
	Compatibility Issues

	Macro Procedure
	Interface

	Asynchronous Procedures
	Interrupt
	Background
	Startup
	Changing %var Values During Startup

	Condition Block
	Default Mode
	No-Default Mode
	Sequential Mode

	BlockScript Block
	Inputs and Outputs
	Environment Variables
	Local Variables
	Init, Output, and State Phases
	Default Phase

	States
	Local Variables and Phases
	Discrete Semantics
	Continuous Semantics

	Looping Concepts
	Terminology
	Loops and Scalar Code
	Rolling Loops with Scalar Code Generation
	Vectorized Code
	Types of Loops
	Table 5-4. Scalar Code Semantics for the Loop Types
	Table 5-5. Vectorized Code Semantics for the Loop Types
	Examples of Rolled and Unrolled Loops

	Parameters
	Using Parameters Instead of States in a Discrete Model

	Optimizations
	Constant Propagation/Hard-Coding
	Dead Code Elimination
	Implicit Type Conversion

	Special Directives
	Table 5-6. BlockScript Special Directives

	UserCode Block
	Phases of the UCB
	Indirect Terms
	Parameterized UCB Callout

	Software Constructs
	IfThenElse Block
	WHILE Block
	BREAK Block
	CONTINUE Block
	Local Variable Block
	Sequencer Block

	Difference Between Local and Global Variable Blocks
	Scope
	Lifetime

	Continuous Subsystem
	Explicit Phases
	Integrator
	Limitations

	Multiprocessor Code Generation
	Shared Memory Architecture
	Distributed Memory Architecture
	Shared Memory Callouts
	Callout Naming Convention

	Mapping Command Options
	Fixed-Point Support for Multiprocessor AutoCode
	Definitions and Conventions
	Shared Memory Fixed-Point Callouts in AutoCode/C

	Shared Variable Block Support
	Shared Memory Callout Option

	Global Variable Block Callouts
	Callout Pairs
	Non-Shared (Local) Global Variable Blocks
	Shared Global Variable Blocks

	Chapter 6 Vectorized Code Generation
	Introduction
	How Code Is Generated
	Scalar Gain Block Example
	Vectorized Gain Block Example
	Array Subscripts

	Signal Connectivity
	Block Outputs
	Block Inputs
	Figure 6-1. Poorly Connected Gain Block

	Vectorization Modes
	Maximal Vectorization
	Mixed Vectorization
	Vector Labels and Names

	Example
	Figure 6-2. Example Model Diagram

	Vectorization Features
	Multiple Arrays within a Block
	Figure 6-3. Multiple Array Mode

	Split-Merge Inefficiency
	Split Vector
	Figure 6-4. Example of a Split Vector
	Merge
	Figure 6-5. Complete Split-Merge Diagram

	External Outputs
	Copy-Back
	Figure 6-6. Copy-Back Example
	Eliminating Copy-Back
	Other Copy-Back Scenarios

	Vectorized Standard Procedure Interface
	Figure 6-7. Vectorized Procedure Interface

	Ada Array Aggregates and Slices

	Vectorization of the BlockScript Block
	Matrix Outputs

	Chapter 7 Code Optimization
	Read from Variable Blocks
	Restart Capability
	Merging INIT Sections
	Reuse of Temporary Block Outputs
	Reuse Temporaries as Specified
	Maximal Reuse of Temporaries

	Constant Propagation
	Optimizing with Matrix Blocks
	Optimizing with Constant Blocks
	Optimizing with Callout Blocks
	Optimizing with Inverse Blocks
	Optimizing with Division Blocks
	Table 7-1. Optimization Table for Callout Blocks

	Summary

	Chapter 8 AutoCode Sim Cdelay Scheduler
	Introduction
	Task Posting Policies
	Standard AutoCode Scheduler
	Figure 8-1. Model with Enabled and Triggered Tasks
	Figure 8-2. Latencies Present in Default AutoCode Scheduler
	Scheduler Pipeline
	Figure 8-3. Scheduler Pipeline Stages in the Standard AutoCode Scheduler

	Managing DataStores in the Scheduler
	Figure 8-4. Scheduler Pipeline Stages in the Sim Cdelay AutoCode Scheduler

	Sim Cdelay Scheduler
	State Transition Diagrams of Tasks under Sim Cdelay
	Figure 8-5. New STD for Free-Running Periodic Tasks
	Figure 8-6. New STD for ATR Triggered Tasks
	Figure 8-7. New STD for ATR Triggered Tasks

	Implementing the Sim Cdelay AutoCode Scheduler
	Implementation Details
	DataStore Priority Problem

	Using the Sim Cdelay Scheduler
	Figure 8-8. Latencies Present in the AutoCode Scheduler

	Template Configuration for Enhanced Performance
	Figure 8-9. Alternative (Old Enable Policy) STD for an Enabled Task

	Shortcomings of the Sim Cdelay Scheduler

	Chapter 9 Global Scope Signals and Parameterless Procedures
	Introduction
	Data Monitoring/Injection
	Specifying Monitored Signals
	Generating Code for Monitored Signals
	Limitations
	Unsupported Blocks
	Connection to External Output
	Variable Block Aliasing
	Monitored Signals within a Procedure SuperBlock
	Monitoring Procedure External Outputs

	Parameterless Procedure
	Specifying Parameterless Procedure Interface
	Input Specification
	Output Specification

	Using a Parameterless Procedure
	Global-to-Global Input Connection
	Global Output Connection

	Condition Block Code Generation
	Reusing a Parameterless Procedure
	Generating Code for Parameterless Procedures
	Issues and Limitations
	Communication Between Subsystems
	Variable Blocks Versus Global Scope
	SystemBuild Simulator
	Connection to External Output

	Recommendations
	Naming Convention
	Model Documentation
	Explicit Sequencing
	Analyzer and AutoCode Warnings
	Changing Scope Class

	Command Options

	Appendix A Technical Support and Professional Services
	Index
	A-C
	D-F
	G
	H-K
	L-P
	R-S
	T
	U-X
	Y

